

NoteWordy: Investigating Touch and Speech Input on Smartphones for Personal Data Capture

Yuhan Luo1Bongshin Lee2Young-Ho Kim3Eun Kyoung Choe4

- ¹ City University of Hong Kong
- ² Microsoft Research
- ³ Naver AI Lab, Republic of Korea
- ⁴ College of Information Studies, University of Maryland

* Yuhan Luo and Young-Ho Kim conducted this research while at University of Maryland

Self-tracking often involves capturing multiple data types

22		51	-
23	:	52	
00		53	

Input text

Activity type

Additional notes

Mood

The importance of manual tracking

- Collecting subjective/ contextual data
- Raising self-awareness

[Choe et al., 2014; Kim et al., 2017]

Traditional touch input & emerging speech input

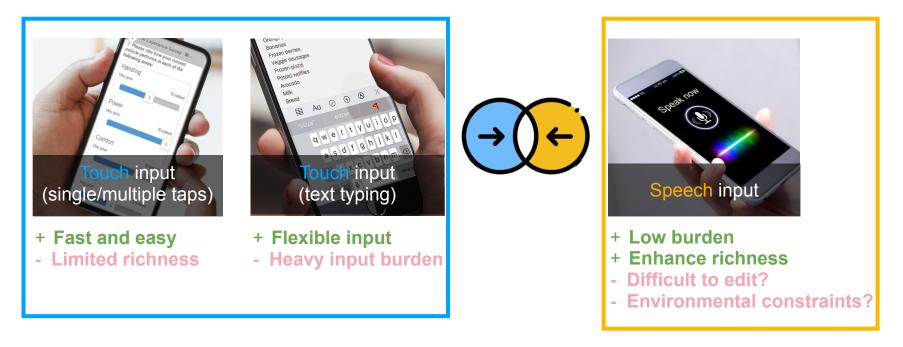
- Limited richness
- + Flexible input- Heavy input burden

- + Low burden
- + Enhance data richness
- Difficult to edit?
- Environmental constraints?

[Luo et al., 2020; 2021; Korpusik et al., 2019; ModEat, Silva et al., 2021]

Limited research on how speech can support self-tracking

Audio recording without data processing [FoodScrap, Luo et al., 2021]


Extracting only single data type

- Numbers [TandemTrack, Luo et al., 2021]
- Domain-specific items (e.g., food name and quantity) [Korpusik et al., 2019; ModEat, Silva et al., 2021]

Little understanding on how people use speech together with other input modalities

Integrating touch & speech input

[Luo et al., 2020; 2021; Korpusik et al., 2019; ModEat, Silva et al., 2021]

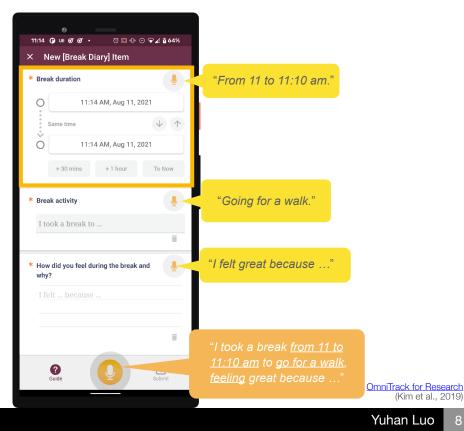
Research Questions

RQ1. How do people use touch and speech input, individually or together, to capture different types of data for self-tracking purposes?

RQ2. How does the input modality affect people's data capture burden?

RQ3. How does the input modality affect the data richness of free-form text input?

NoteWordy: a multimodal self-tracking app


Touch input

Single/multiple taps or typing \rightarrow one data field

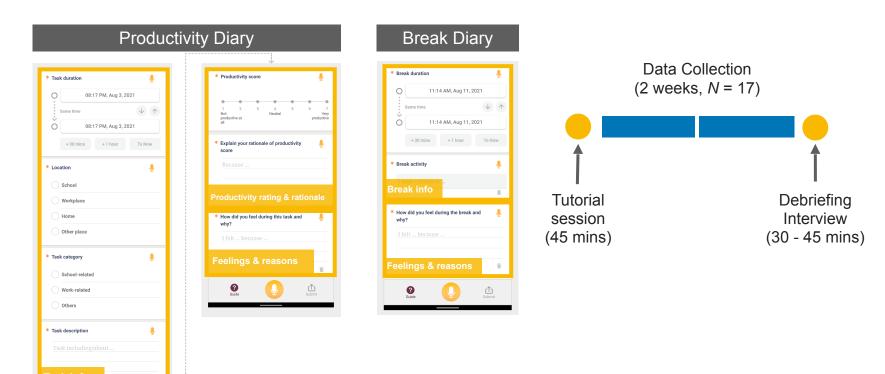
Local speech (LS) input One utterance \rightarrow one data field

Global speech (GS) input One utterance —> one/multiple data fields

* One utterance: spoken input from the user at a time, could be a single word, an entire phrase, a sentence, or several sentences.

ACM ISS 2022

(Kim et al., 2019)

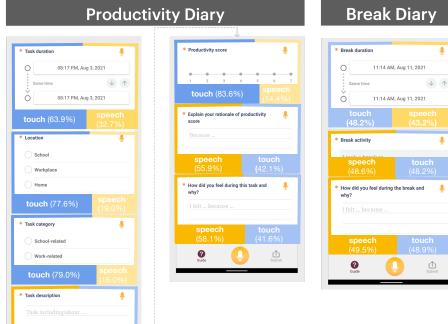

Research Context: **productivity tracking** for working graduate students

Productivity can be conceptualized in multiple dimensions corresponding to different data types (e.g., task duration, productivity level) [Kim et al, 2019]

Working graduate students: juggle multiple tasks and struggle with maintaining a healthy balance between school and work [Lee et al, 2017]

Data capture regimen and study procedure

Finding Highlights


- Modality preferences
- Data Capture burden
- Data richness of free-form input

NoteWordy general usage

Diary	# of total entries	# of touch-only entries	# of speech-only entries	# of touch + speech entries
Productivity Diary	1032	429 (41.6%)	38 (3.7%)	565 (54.7%)
Break Diary	382	184 (48.2%)	131 (34.3%)	67 (17.5%)

* We use "speech-only input" to denote people using LS or GS input to enter their data, although it requires touching the speech button (i.e., the "push-to-talk" operation).

Modality choice by data type

Most **multiple choices**, and **Likert scale** were filled by touch input

Most **timespan** were filled by touch input, but also frequently filled by speech input

Text fields were commonly filled by both touch and speech input

* The sum percentage of touch and speech input < 100%, because there were a few (less than 5%) cases where a data field was edited multiple times by both input modalities

Using GS to capture multiple data fields

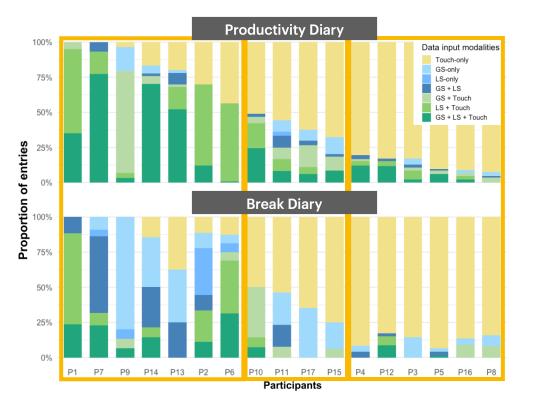
Start with GS to capture multiple data fields \rightarrow adjust with touch or LS if needed

ل	J	I was	<u>somewhat</u>	<u>productive</u>	<u>because</u> .	

I work on a work-related task at workplace

"fast and intuitive" "more close to natural language"

"awkward expression"


GS was used more frequently in Break Diary (43.2%) than Productivity Diary (22.1%)

I walked outside from 4 to 4:30 pm, feeling refreshed because the weather was nice

"short and straightforward" "all the data fields on the screen"

Modality preferences vary across individuals

+ Convenience + Accuracy

- Privacy concerns

"Not want share my productivity with colleagues"

- Not a "social norm"

Worrying about oversharing

- More comfortable with touch input
 - "Better at writing than speaking" complicated thoughts

Average time spent (secs)

Diary	Avg	Touch-only entries	Speech-only entries	Touch + speech entries
Productivity Diary	143.7	175.9	115.9	121.1
Break Diary	78.4	86.7	65.5	81.0

Entries involving speech input took less time to complete than touch-only entries - speech input could help reduce entry completion time

The difference was significant in the **Productivity Diary** (b = -0.38, p = .004)

Speech recognition issues are the main hurdles

Number recognition "7 to 9" \rightarrow "729" (timespan recognition fail)

Misinterpretation

"Moderately productive" → Productive (original intention: somewhat productive)

Punctuation

"It kept interpreting my pauses as periods when they should have been commas" (P8)

Data richness in free-form input: task description

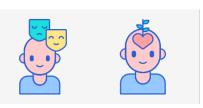
Generality	Specifics	Specifics with additional contexts
General description without concrete information	Specific about task details or the reasons of productivity rating / feelings	Specifics with contexts beyond the questions asked (e.g., task procedure, upcoming events)
"Had a meeting"	<i>"Met the team to discuss mockup design"</i>	"I attended a UX meeting with other designers. We shared some case studies applying design thinking and talked to the BA team for next steps"

Can input modality make a difference?

Task description: entries involving speech input tended to be specific (OR = 3.79, p < .001) and were more likely to include additional contexts (OR = 3.0, p < .001)

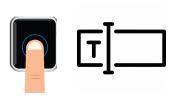
Productivity rationale: entries involving speech input tended to be specific (OR = 2.16, p = .002) and include additional contexts (OR = 4.18, p < .001)

Feelings: entries involving speech input were more likely to include additional contexts (OR = 2.12, p < .03)


* OR: Odds ratio. An OR greater than 1 indicates that the condition or event is more likely to occur in that group

Implications

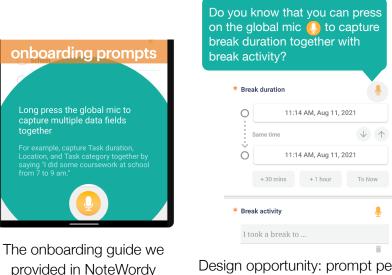
Integrating Touch & Speech to Capture Different Data Types



- Fast for free-form text
- Flexible time input
- Intuitive expression
- Enhance data richness

Capturing detailed contextual data (e.g., self-reported symptoms, mood, thoughts/feelings)

- B
- Easier for single tap
- Quick editing support
- Account for privacy


Capturing structured/private data & supporting error correction

Supporting Efficient Multi-Data Capture With Speech Input

Arrange semantically-related data fields together

Guided prompts to overcome unfamiliarity

Design opportunity: prompt people to try out GS when they press on LS

Adapting Speech Recognizers for Various Tracking Contexts

Context-agnostic speech recognizers are not fine-tuned for self-tracking data E.g., Number recognition tends overlook the context ("7 to 9" —> "729")

More research efforts are needed to contribute to the contextualized

speech data from diverse self-tracking activities

- Date & time, duration
- Labels of Likert scale (e.g., stress level, sleep quality)
- Common units for daily activity (e.g., exercise repetitions)

•

Thanks!

Contributions

Design of **NoteWordy**, a multimodal self-tracking app integrating touch and speech input

Empirical understanding of how speech works with touch input support people to capture different types of data for self-tracking purposes

Acknowledgment

Young-Ho Kim Research Scientist Naver Al

Associate Prof. U of Maryland

Study participants and anonymous reviewers

NSF Awards #1753452 "Advancing Personal Informatics through Semi-Automated and Collaborative Tracking"