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Fig. 1. The illustration of three designs for a battery-saving indicator on the status bar of a mobile phone, including: (a)
a baseline version (PB) that displays only the saving status during the process and at the end; (b) a version built upon
the baseline showing the total amount of battery saved at the end (PS); and (c) a real-time statistics version (PRS) that
continuously displays the amount of battery being saved. When the saver is on, an arrow button appears at the top left,
allowing participants to turn off the saver. Additionally, two battery-saving modes—regular and extreme modes—are randomly
applied to the saver. They are indicated by different battery icons.
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The ubiquitous mobile devices have made balancing battery efficiency and user experience (UX) a critical issue. While prior
work has extensively researched battery-saving strategies by managing computational resources, the design of user interface
(UI) that communicates battery-saving status with users remains underexplored. In this work, we investigate how different
visual representations of battery-saving indicators influence user behavior during intensive mobile interactions. We designed
three versions of UI indicators for battery saving, with varying levels of statistical details. Through a between-subjects
user study with 36 participants completing a series of intensive tasks on a mobile phone with limited battery, we examined
behavioral and perceptual patterns across study conditions. Our findings showed that real-time saving statistics improved
battery-saving efficiency and mitigated negative user experience under moderate performance degradation. However, when
performance drops sharply, the same indicators may bring frustration and lead users to quickly turn off the saver. Our
post-study interviews further revealed the strategic choices made by participants to optimize task completion while saving
batteries. With the lessons learned, we discuss the implications of designing visual indicators for battery-saving mode in
different interaction scenarios, and propose future directions for building sustainable battery-saving interfaces.

CCS Concepts: • Human-centered computing→ HCI design and evaluation methods; Interaction design theory,
concepts and paradigms.

Additional Key Words and Phrases: Mobile Systems, Sustainable Computing, Human-Computer Interaction, Computational
Resource Management
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1 Introduction
Mobile phones have become an integral part of our daily life. Over the past few years, they have rapidly evolved
from basic devices for sending text messages and making phone calls to advanced systems capable of performing
high-demanding and intensive tasks such as playing videos, gaming, real-time navigation, etc [22, 25, 32]. To ensure
a smooth user experience, developers often over-provision performance by utilizing extensive computational
resources including CPUs, GPUs, and memory [4, 29]. The utilization of these computational resources, however,
is often at the expense of battery drain [6, 7]. With over 5 billion active mobile device users worldwide [58], the
total battery energy consumption of these devices was estimated to reach 22.5 TWh in 2021, equivalent to 123%
of electricity usage of major technology companies such as Google [46].

The growing energy crisis in the mobile industry has made battery saving an important issue at the societal level,
but battery technology has not kept pace with the needs of computational resources in mobile devices. According
to a survey of more than 2000 smartphone users, nearly 92% of them reported having low-battery anxiety [64].
To address this challenge, existing research primarily focused on configurations of the back-end/architecture or
investigating user tolerance on different configurations, such as the Dynamic Voltage and Frequency Scaling
(DVFS) [54]. While these efforts have shown to be effective in saving battery cost while maintaining a relatively
good user experience, little exploration has been done at the user interface level. That is, how interface design can
contribute to energy savings by mitigating the perceived performance degradation, optimizing user satisfaction,
and even encouraging them to adopt more energy-conscious usage behaviors.

In the field of human-computer interaction (HCI), there has been rich empirical evidence showing that informing
users about the system status can improve their experiences and even tolerance when facing system performance
drop [30, 31, 43]. For example, even simple feedback mechanisms such as loading icons or progress bars have been
shown to reduce users’ perceived waiting time and frustration during system delays [30], while transparency in
AI systems can foster greater user trust and acceptance [61]. However, few studies have applied these design
concepts in battery-saving contexts, and little is known about whether and how users may perceive performance
drops differently when informed of battery-saving status through the interface. In this light, we aim to explore
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user interface (UI) design opportunities for “battery-saving modes” where device performance typically decreases,
with the goal of improving user experience and encouraging them to engage in more sustainable phone use
behaviors. Specifically, we focused on scenarios in which users need to perform interaction-intensive tasks while
the battery is running low, and seek to answer two research questions:

• RQ1.Whether and how do UI designs that present different levels of details about battery saving status
influence users’ perceptions and reactions to the battery saving mode?

• RQ2. What are users’ attitudes and expectations regarding the trade-offs between battery saving and
system performance?

To investigate these questions, we designed three versions of battery-saving indicators placed at the status
bar on the top of the screen. These versions share the same battery-saving modes at the backend, with one
moderately decreasing device performance and the other doing so more aggressively (see Figure 1):

• The baseline version (PB), which only shows whether the battery saver is on or off, and when it ends.
• The total saving version (PS), which is built upon the baseline version and further shows the total battery
saved at the end of the saving session.

• The real-time saving version (PRS), which is built upon the total saving version and shows the real-time
battery saved during the saving session, in addition to the total saving.

To examine the effects of the three versions of designs on user perception and behaviors, we conducted a
between-subjects lab study with 36 mobile phone users. During the study, participants were randomly assigned
to one of the three interaction conditions to complete a set of predefined tasks. At the end of the study, we
interviewed participants to further understand their experiences and thoughts about the battery-saving indicator.
We choose a controlled lab study to ensure consistent measurement of participants’ interaction behaviors,

while recognizing that such control may limit ecological validity compared to studies conducted in real-world
environments. To mitigate this limitation, we simulated a constrained battery scenario by setting the initial
charge to 30% and employed a performance-based compensation, which prompted participants to strategically
manage the trade-off between task completion and battery usage.
We found that PRS group exhibited a significantly lower turn-off rate (5.97% for PRS vs. 16.64% for PB) and

higher saving efficiency (97.66% for PRS vs. 90.35% for PB) compared to PB group under the regular saving mode.
PRS group tended to remain in saving sessions longer before disabling the saver, spending an average of 75.17
seconds compared to the PB group’s 50.78 seconds. Interview data further highlighted diverse user perceptions
and preferences, informing design implications for sustainable and user-friendly battery-saving UIs.

Our findings contribute to the IMWUT and HCI communities in three key areas: (1) an empirical understanding
of how varying indicator designs in battery-saving modes affect user perceptions and behavior; (2) insights
into individual preferences and expectations of battery saving in their own lived experiences; and (3) design
implications for interfaces that encourage sustainable mobile phone use.

2 Related Work
In this section, we first cover related research on improving energy efficiency in mobile devices, including
hardware-level optimizations and adaptive energy management, and then explore the opportunities for UI-
driven, human-centered approaches aimed at enhancing user experience through UI design within and beyond
battery-saving applications.

2.1 System-Level Optimization via Hardware Control
Research on improving battery efficiency in mobile devices has evolved through several stages. Initial efforts
mainly focused on hardware-level strategies, including innovations in CPU/GPU architecture, display technologies,
and integrated power management systems [1, 9, 55, 63]. For instance, Kadjo et al. [27] proposed a Multi-Input
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Multi-Output (MIMO) state-space controller to dynamically coordinate CPU-GPU frequency scaling, achieving a
17.4% reduction in energy use on Intel Baytrail-based Android devices with only 0.9% performance loss. Similarly,
Park et al. [45] developed a CPU and GPU Dynamic Voltage Frequency Scaling (DVFS) strategy named Co-Cap
to limit frequency provisioning through coordinated frequency capping, improving energy per frame by 10% on
average on over 70 mobile gaming workloads. Prakash et al. [51] targeted thermal regulation to jointly manage
energy and performance in various mobile workloads, achieving up to a 90% reduction in temperature variance
while improving the Frames Per Second (FPS). These hardware-level solutions have shown promising results
in reducing power consumption and have been applied to various industry products, however, they are limited
in their responsiveness to user context and preferences [23, 50], as researchers found later [36, 56], users vary
widely in their tolerance for performance degradation and expectations regarding battery life, depending on both
personal preferences and usage scenarios.

2.2 User-Aware Adaptive Energy Optimization
In recent years, researchers have shifted the focus towards exploring adaptive systems that dynamically balance
energy savings with user experience (UX). For example, through surveying over 2,500 users, Halpern et al. [22]
found that user satisfaction with identical CPU resource scheduling (e.g., core count and frequency) varied
significantly in different interaction contexts, such as mobile gaming and video streaming. These findings have
prompted research to advance toward more fine-grained resource allocation. On the one hand, researchers utilized
self-adaptive techniques to optimize the balance between user satisfaction and energy consumption [16, 24].
For example, Hwang et al. designed RAVEN [24] to track and predict frame similarity based on human visual
perception of graphics changes. When succeeding frames were found to be similar, RAVEN lowered the rendering
rate to save energy. This kind of approaches focused computational resources on high-interest areas (e.g., faces
and moving objects) instead of uniformly rendering the entire scene, enabling perception-aware energy savings.
On the other hand, emotion recognition and perception prediction started to serve as an important reference.
Poyraz et al [50]. predicted user satisfaction and adjusted CPU core count and frequency accordingly by analyzing
users’ mobile phone interaction patterns (e.g., high-frequency touch and device shaking) captured through built-in
sensors, such as accelerometers and gyroscopes. Li et al. [34, 35] analyzed users’ facial expressions (e.g., smiling
and frowning) using the front-facing camera. When positive emotions are detected, the system appropriately
reduces the resource consumption of the current task. Conversely, if negative emotions are detected, the resource
allocation for the current task is immediately increased to ensure a satisfactory user experience.
However, these solutions primarily performed automatic resource allocation on the backend, leaving users

outside the gate of how the battery is optimized on their devices. In other words, the implementation of these
energy management strategies fully relies on the predefined logic, while users are unable to inform the system
regarding their current preferences and needs. For instance, with the rendering framework RAVEN, users do not
have the agency to indicate areas of their interests on the display screens [24]. On systems that adjust device
performance based on changes in users’ facial expressions, continuous camera monitoring may raise privacy
concerns, and cultural differences may introduce ways that user emotions are interpreted [34, 35]. These issues
highlight a tension in existing battery efficiency optimization: when the system takes full control of resource
allocation, users are viewed as “passive recipients”, and thus lose the opportunity to become active managers of
the resources in their devices [20].

2.3 Enhancing User Experience via UI Design: Opportunities for Battery Saving
The user interface (UI) is the essential part of computational systems that enables user control and directly
shape their experience and perception of system performance. In particular, “visibility of the system status”
has been one of the golden usability heuristics since 1990s, highlighting that visualizing the activities behind
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the interface could improve user perceived control of the system and mitigate negative experiences [43]. For
instance, several research studies showed that during waiting times (e.g., website loading, file download), dynamic
visual indicators such as loading icons, progress bars, and text message can effectively distract users from the
negative perception of delay and increase their willingness to wait [21, 30, 40, 42]. More relevantly, Ferreira
et al. uncovered that the transparency of battery information, such as the remaining battery time and what is
draining the battery, can significantly reduce user frustration [17]. Jung et al. further proposed Powerlet that
could display the power consumption of apps in real time, leading users to reduce daily energy consumption by
8.2% [26]. A recent work done by Lee et al. found that predicting future battery usage can significantly mitigate
low-battery anxiety. Specifically, they developed Serenus with real-time prediction of battery consumption
of different applications and videos, such as “watching this video will reduce battery by 1.8%” [31]. The rich
empirical evidence demonstrated the potential of transparent battery and performance visualizations to manage
user expectations, reduce frustration, and promote energy-aware behaviors.
Despite the benefits, users’ perceptions and preferences for different UI design strategies for battery saving

remain unclear. Our work extends this line of research by investigating how the level of detail in system status
information affects user perception during intensive mobile interactions, as well as whether and how this
information can encourage more battery-conscious behaviors.

3 Battery-Saving Framework
To answer the research questions, we first developed a custom framework that runs on the test device to change
the system configuration seamlessly in the background. At the UI level, the framework displays the battery saving
statistics on the status bar; in the backend, it alters system configuration and logs user interactions.
Device & Operating Platform. We used Samsung Galaxy A54 as our test device. This device was released in
2023 and represents a typical mid-range Android device. Powered by the Exynos 1380 SoC, the device has an
octa-core CPU (4×2.4 GHz Cortex-A78 & 4×2.0 GHz Cortex-A55) and a penta-core GPU (5×950 MHz Mali-G68
MP5) [14]. The octa-core CPU is divided into two clusters: the little cluster with Cortex-A55 cores and the big
cluster with Cortex-A78 cores. All CPU cores within the same cluster share the same frequency, while for GPU,
its five cores are the same and share the same frequency. The display is a 6.4-inch Super AMOLED panel with
a resolution of 1080×2400 pixels. The device runs Android 13. We rooted the device to gain access to system
configuration files and to run our framework with the help of Magisk [62], with built-in features such as “Adaptive
Brightness” and “Battery Saver” disabled to avoid interference.
App Selection. To capture user interactions that represent a majority of smartphone usage scenarios, we
selected target applications to test based on a 2024 report from Statista [59], showing that social media (35.1%),
entertainment (32.7%), utility & productivity (13.6%), gaming (9.7%), and web browsers & search engines (5.8%)
are the top five categories that add up to over 95% of mobile app usage. Therefore, we selected Douyin (Chinese
version of TikTok, social media), YouTube (entertainment), Google Maps (utility), Candy Crush (gaming), and
Chrome (web browser) to cover these five categories. In addition, we included Poe to represent the growing
popularity of AI chatbot applications. This selection allowed us to evaluate how the UI designs perform under
diverse interaction conditions. For each app, we tailored battery-saving strategy to its specific interaction patterns,
as described later in Section 3.2.3. In the following, we elaborate on our design of the battery-saving indicator
and implementation details.

3.1 Battery-Saving Indicator Design
3.1.1 Leveraging System Visibility to Mitigate Negative Impact on User Experience. Our design of the three
versions of the battery-saving indicator represents three levels of details about the saving status (Figure 1): PB
(baseline) showing only whether the saving mode is on and when it ends (“Battery Saved”); PS (total saving
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statistics), adding the total amount of battery saved at the end of per session to the PB (“1% Battery Saved”);
PRS (real-time saving statistics), adding a real-time display of the battery being saved to the PS. This setup was
inspired by prior work that leverages system visibility to mitigate negative user experience during performance
degradation [21, 30, 40, 42], while enabling us to examine how the granularity (how much information to disclose)
and frequency (how often to update this information) of system status affects users’ perceptions and behaviors.
To minimize distraction and avoid being obtrusive, we adopted a peripheral design concept [37] by placing a
small indicator within the phone’s status bar.

3.1.2 Examining Experience Variations Under Different Performance Degradation. To investigate how the intensity
of performance degradation influences user tolerance, we offered two distinct battery-saving modes: Regular
(RM) and Extreme (EM) ones. The former applies moderate hardware constraints to extend battery life, whereas
the latter enforces more aggressive strategies to maximize battery saving. The effects of different degradation
intensity were also commonly examined in prior work [22, 33]. To help users visually distinguish these two
modes, we designed two different icons for them: a standard battery icon for the Regular mode, and a battery with
a small growing tree for the Extreme mode, symbolizing its greater environmental and energy-saving benefits
(see the icon area in the top-left of Figure 1). Additionally, to streamline a user study later, these two saving
modes were designed to impact the system performance more compared to typical built-in battery savers for the
purposes of achieving noticeable saving during a short period of time.

3.1.3 Providing Accessible Control of the Saving Mode. To enable control of the saving mode, we placed floating
window with a transparent background that allows users to stop the saving mode at any time (see the arrow
button in the screenshot in Figure 1). This setup helps us gather user preferences in a lightweight manner: keeping
the mode active implies user acceptance of the performance trade-off, while deactivating it signals intolerance.

3.2 Backend Saving Modes
We first defined the target saving rates for our two battery-saving modes, and then created corresponding
performance drops that would accompany these saving rates. Previous studies have shown the typical power con-
sumption of different components in a smartphone, with the three major power-hungry components in idle state
being the System on Chip (SoC, containing CPU and Graphics), the Global System for Mobile Communications
(GSM), and the screen [5]. Of them, SoC and screen brightness are the only two components that can be adjusted
by software to save power. Therefore, our battery saver focuses on adjusting the SoC and screen brightness.

3.2.1 Simulating Battery Drain and Defining Saving Rates. We developed a background service to simulate battery
drain at a predefined, consistent rate, for all participants, eliminating impacts from other background services.
The rate of battery drop is set to two to three times the actual rate, simulating a degraded battery life to make the
impact of saving modes more prominent.
We drop the battery at a rate of 0.75%/min in Default, 0.30%/min in RM, and 0.20%/min in EM. These rates

were calibrated for our 55-minute study starting at 30% battery (see Section 4.3.2). The Default rate (0.75%/min)
is designed to drain the 30% battery in 40 minutes, compelling participants to use a saving mode to complete
the session. For instance, considering RM only, a participant would need to spend at least 25 minutes in it to
prevent an early shutdown. Additionally, these settings create a noticeable difference in battery consumption
between the three modes: RM saves around 60% of power compared to Default, while EM saves around 73% of
power compared to Default. Once the simulated battery level reaches 0, the background service will shut down
the test device, and we will conclude the user study in advance.

3.2.2 Energy Consumption Measurement. To design tailored SoC configurations for the six apps we selected, we
first measured the energy consumption of each app. We obtained the power profile [57], provided by the device
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manufacturer, from the firmware of the test device [53]. The power profile file contains the energy consumption
of each component in the device (see Appendix B for the full power profile). The power profile value is given in
milliamps (mA), representing the current consumption of the component at a nominal voltage. It contains the
estimated energy consumption of the CPU and GPU cores at different frequencies.

We tested each app on the test device for a period of ten minutes, following normal usage patterns, and utilized
Android Debug Bridge (adb) [13] to monitor the CPU and GPU frequencies at a rate of 1 Hz. We noted that GPU
cores are not always active, so we also recorded the percentage of active GPU time for each app.

We compute the total SoC power profile value (PPV SoC) by summing up the subtotal values of three components:
the little CPU cluster (denoted as L), the big CPU cluster (denoted as B), and the GPU (denoted as G). The calculation
is given by

SubL = 𝑛L · PPV L (FreqL) + (𝑁L − 𝑛L) · PPV Susp,

SubB = 𝑛B · PPVB (FreqB) + (𝑁B − 𝑛B) · PPV Susp,

SubG = 𝑁G · PPVG (FreqG) · Act%,
PPV SoC = SubL + SubB + SubG.

Here, 𝑛L and 𝑛B represent the number of enabled cores in the little and big clusters, while 𝑁L and 𝑁B represent
the total number of cores available in those clusters. For the GPU, 𝑁G denotes the total number of cores, and
Act% represents the percentage of active GPU time observed during the measurement window. It is not possible
to disable GPU cores on our test device.
We also modeled the screen power consumption. As the power consumption of the OLED screen is approxi-

mately linear with brightness level [10], we model its power profile value as

PPV screen (𝐵) = (PPV full − PPVmin) · 𝐵 + PPVmin,

where 𝐵 is the brightness level (normalized 0–1), PPV full = 252mA is the power at full brightness, and PPVmin =

81.5mA is the power at minimum brightness (see Appendix B).

3.2.3 Saving Mode Configurations. Based on the SoC energy consumption of each app we get, we found that
these six apps can be divided into two groups: Low Energy Consumption (LEC) and High Energy Consumption
(HEC). The LEC group includes Candy Crush and Poe, while the HEC group includes Chrome, Douyin, Google
Maps, and YouTube. The apps within each group have similar frequency settings and power profile values, which
allows us to design optimized battery-saving modes for each group.

From the SoC part, we utilized the CPU hotplug feature of Android’s underlying Linux kernel [15] to disable
CPU cores as part of the battery-saving modes. More specifically, we disabled CPU cores in the big cluster first,
as the little cluster is more power-efficient and can handle most of the light tasks. We then disabled CPU cores in
the little cluster if it is possible to save more power while maintaining a reasonable performance, but we ensured
that at least one core is active in each cluster to maintain system stability. Lastly, we adjusted the CPU and GPU
frequencies to approximate the desired battery-saving levels and a create distinguishable performance difference.
The final configurations of the battery-saving modes and estimated power savings are shown in Table 1.

Reducing the screen brightness can also bring a substantial amount of power saving. We set the screen
brightness to 80% of user’s setting in RM and 60% of user’s setting in EM to further reduce power consumption.
When entering Default setting from RM or EM, we set the brightness level back to the user setting again. The
brightness level is adjusted gradually over a period of 10 seconds to prevent sudden changes in brightness that
might affect user experience [12]. Let 𝐵user be the user’s brightness setting. In a saving mode with a reduction
factor 𝑅mode (where 𝑅RM = 0.2 for RM and 𝑅EM = 0.4 for EM), the power saved, ΔPPV screen, is

ΔPPV screen = PPV screen (𝐵user) − PPV screen (𝐵user · (1 − 𝑅mode))
= (PPV full − PPVmin) · 𝐵user · 𝑅mode.
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Table 1. SoC configurations and power profile values of the default setting and our two battery-saving modes: regular (RM)
and extreme (EM).

Config CPU Little Cores CPU Big Cores GPU Cores Total % Default
Freq Num Sub Freq Num Sub Freq Num Act Sub

LEC
Candy Crush
Default 1186 4 149 1127 4 446 354 5 99.64 501 1096 100
RM 1632 1 68 1632 1 198 221 5 99.64 329 595 54.29
EM 864 1 48 864 1 97 221 5 99.64 329 474 43.25

Poe
Default 1140 4 150 1452 4 765 367 5 60.71 312 1227 100
RM 1632 1 68 1632 1 198 221 5 60.71 200 466 37.98
EM 864 1 48 864 1 97 221 5 60.71 200 345 28.12

HEC
Chrome
Default 1263 4 168 1519 4 949 359 5 55.63 280 1397 100
RM 533 2 62 1248 2 250 221 5 55.63 184 496 35.50
EM 1248 2 88 864 1 97 221 5 55.63 184 369 26.41

Douyin
Default 1247 4 162 1310 4 710 351 5 100 495 1367 100
RM 533 2 62 1248 2 250 221 5 100 330 642 46.96
EM 1248 2 88 864 1 97 221 5 100 330 515 37.67

Google Maps
Default 1323 4 178 1772 4 1174 358 5 76.68 388 1740 100
RM 533 2 62 1248 2 250 221 5 76.68 253 565 32.47
EM 1248 2 88 864 1 97 221 5 76.68 253 438 25.17

YouTube
Default 1470 4 199 1624 4 1135 469 5 56.64 398 1732 100
RM 533 2 62 1248 2 250 221 5 56.64 187 499 28.81
EM 1248 2 88 864 1 97 221 5 56.64 187 372 21.48

Freq: Frequency (MHz)
Num: Number of enabled cores
Act: Percent of GPU active time
Sub: Subtotal power profile value (mA)
Total: Total power profile value (mA)

Therefore, when user’s brightness setting is 100%, we estimate that RM reduces up to 34.1 mA of current and EM
reduces up to 68.2 mA by lowering the brightness. With the SoC and brightness adjustments, our saving modes
are able to create a distinguishable performance difference corresponding to the defined saving rates.

4 User Study
We conducted a between-subjects user study in a lab environment with the test device we used for developing
the framework. Like prior work that examined user experience in system performance degradation [30, 42],
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including those in battery saving contexts [34, 35, 50], we also chose to conduct the study in a lab environment
given the research goals and realistic constraints. First, to make the effects of the three battery-saving indicators
(PB, PS, PRS) comparable, we needed to measure participants’ interaction patterns under a consistent setting.
Thus, a controlled lab environment was preferred for minimizing confounding factors that can arise (e.g., various
phone models and app usages, inconsistent system performance). Second, in real-life settings, the availability of
portable chargers often prevent the use of battery-saving modes, which makes it difficult to observe the behaviors
we aimed to study. Third, obtaining root access to participants’ phones to adjust CPU/GPU configurations poses
safety and privacy concerns.

Realizing that the generalizability of the findings might be limited, we made efforts to improve the ecological
validity by simulating an urgent, low-battery scenario: we designed a series of time-limited and goal-oriented
tasks with a performance-based compensation mechanism. In addition, we conducted a post-task interview to
understand participants’ subjective experience on the indicator designs and their experiences of using battery-
saving features, gathering qualitative insights that complement the quantitative data.
Before proceeding to the formal study, we tested the framework with two pilot participants to ensure that

the experience was smooth without technical glitches. This helped ensure a smooth and reliable experience for
participants in the formal study. The study was approved by the university’s ethics review committee.

4.1 Participants
We recruited 36 participants (16 male and 20 female) from the university community and through social media.
The participants are between 19 and 33 years old (M = 23.47, SD = 3.81); they are all smartphone users and college
students. In a between-subjects lab study, we assigned these participants to complete a series of tasks with our
battery saving framework, interacting with one of the three battery-saving indicator versions (PB, PS, PRS). Each
condition had 12 participants, with a balanced distribution across gender, age, and major of study.

4.2 Experiment Setup & Compensation Mechanism
We designed a set of tasks in each of the six apps for participants to complete (see Table 2), which required
intensive interaction with a time limit (9 minutes per app) and were thus challenging enough to create a sense
of urgency. Note that these tasks were intentionally designed to be goal-oriented to maintain participants’
attentiveness and promote active, rather than passive, device interaction. This approach helped us observe how
battery-saving decisions are made when they are under cognitive demand. For example, participants were not
simply asked to watch a video, but to find specific information within it.
Moreover, we tied a performance-based bonus to participants’ task completion. Specifically, each participant

was compensated with a base amount of HKD 70, plus an additional HKD 5 for each task completed, up to a
maximum of HKD 30. Therefore, a total compensation varied from HKD 70 to HKD 100. Given the difference
between the lowest and highest compensation did not vary significantly (HKD 30, which is approximately USD
3.86), this “micro-incentive” strategy should have not introduced excessive stress to participants [39]. Instead, it
served two purposes in our study: simulating the pressure one feels to finish important activities on a device
before running out of battery, and motivating participants to complete the tasks efficiently.

4.3 Procedure
The study consists of three parts in a private and spacious lab environment. One researcher was present, seated
across the table from the participant to observe and take notes without intrusion. The entire process took around
90 minutes and consisted of a tutorial, six interaction tasks on the testing phone, and a debriefing interview.

4.3.1 Tutorial. Participants were first given a brief introduction to the study and read a consent form regarding
the collection of their interaction with the test device and interview audio. We explained the differences of the two
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Table 2. Interaction Tasks Assigned to Each App in the Lab Study

App Tasks

Candy Crush • (Optional) Try some entry levels to get familiar.
• Complete level 17 to 20.

Chrome • Search for three topics we specified and read out one result to us.
• Search for three images we specified, zoom in, and take a screenshot.

Douyin • Visit the homepage of a user we specified, and find the video with the most comments.
• Watch the video, tell us some information about it, and read out the top-liked comment.
• Given the name of four singers/bands, identify if they have an official Douyin account.

Google Maps • Design a one-day travel plan by public transportation to your favorite city.
• The plan should include at least three attractions, two restaurants, and one hotel.
• Take screenshots of the plan, and make sure to depart from and return to the hotel.

Poe • Pick an official bot and a popular bot from the homepage.
• Chat with each bot by sending at least five text, one voice, and one image message.
• Create a customized bot, and send the same amount of messages to it.

YouTube • Watch three videos we specified, and answer one question about each video.
• Drag the progress bar and change the playback speed of the video to locate the answer.

saving modes—regular (RM) and extreme modes (EM)—regarding their influence on the phone’s performance and
battery saving, as well as the difference of the visual icons representing each mode. Depending on the participant’s
group assignment, we explicitly explained the meanings of the battery-saving indicator, demonstrated the steps
to turn off the battery saver (see Figure 1), and reminded them that their tasks would start with 30% battery left.
We also showed them a task list for each app and explained the compensating mechanism. After that, we gave
the participant some time to interact with the testing device to familiarize themselves with the device, with 31%
battery left. Each participant was also asked to set the brightness and sound levels of the device based on their
preference. This setup meant to reflect their own preferences and also served as the base for the framework to
later adjust the brightness level for battery-saving purposes. The tutorial lasted around 15 minutes.

4.3.2 Interaction Tasks. After the tutorial, we set the battery level of the test device to 30% and handed it over
to the participants. Participants were allotted 9 minutes to complete the tasks in each app, following a specific
sequence that was randomly generated for each participant to eliminate order effects. We told participants that
if the battery ran out during the tasks, the study would end beforehand and they would receive the amount of
compensation based on their task completion. During this process, the battery saver was automatically turned
on at the 1, 4, and 7-minute marks and remained on for 2 minutes by default, and participants could choose to
turn it off (by expanding the top left arrow icon and clicking the “turn it off” button) or leave it on to reduce the
chance of the battery running out. Each time it was on, the framework randomly chose a battery-saving mode
(RM or EM), while ensuring that each mode was chosen at least once. When each battery-saving session was
over, the framework applied the default configuration with a visual note indicating that the saving session had
ended (as shown in Figure 1), and gradually adjusted the screen brightness to the initial setting.
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In the study lab, the task descriptions for each app and the remaining time were shown on a big screen for
participants’ reference. When time was up, we reminded the participant to close the app before switching to the
next one, ensuring the performance of the phone is not affected by the previous app. If the participant completed
all tasks within less than 9 minutes, they could use the remaining time to freely explore the app. The interactive
session lasted about 55 minutes, sometimes shorter when the phone ran out of the simulated battery. At the end
of the session, we retrieved the interaction data from the test device and stopped the framework.

4.3.3 Debriefing Interview. We interviewed each participant after the interaction tasks. The interview questions
focused on participants’ overall experiences during the interaction tasks, including their perceived impact of the
battery saver on the performance of the testing devices, differences in the two saving modes, and the difficulty of
the tasks. We also asked them to share their smartphone charging habits, real-life situations where they often
find themselves needing to use their phone on low battery, and their general thoughts on saving battery on
smartphones in daily life. Each interview session lasted approximately 15 minutes.

4.4 Data Collection and Analysis
4.4.1 Interaction Data. We collected participants’ task completion and their reactions to the battery-saving
mode, which were compared between the three groups using Kruskal-Wallis test. Specifically, when the saver
is manually turned off by the participants, the framework recorded information including the app they were
interacting with, remaining battery level displayed on the status bar, the saving mode applied (regular or extreme),
and the current timestamp. We employed a quantitative approach to analyze the data. Note that since the two
saving mode—regular (RM) and extreme (EM)—were randomly applied by the framework, the maximal amount
of battery that can be saved varied for each participant. Instead of directly comparing the absolute amount of
battery saved, we calculated a normalized metric referred to as the “Saving Efficiency”. For each two-minute
saving session, we established the maximal possible amount of battery saved (0.9% for RM and 1.1% for EM, refer
to Section 3.2.1), which represents the total savings if the mode was never turned off. The Saving Efficiency was
then calculated by dividing a participant’s actual battery saved (based on the time the saver was active) by this
maximal amount. In addition to the turning-off behaviors and saving efficiency, we collected the touchscreen
interaction logs to analyze participants’ engagement with the device. We recorded the touch events in the entire
study including the battery-saving and default sessions. We then calculated the “Touch Frequency,” the number
of touch-down events per minute for each applied configuration.
We used a mixed-effects logistic regression model with the bobyqa optimizer [49] to analyze whether they

turned off the battery saver, and linear mixed-effects regression models to analyze when they turned it off,
their saving efficiency, and touch frequency. To identify an optimal model, we began with a null model and
systematically added the predictors saving mode (or config in case of touch frequency), group, and their interaction
terms to it, using likelihood ratio tests to evaluate each predictor’s contribution. The predictors app and remaining
battery were also included in the model selection process as they are the contextual factors that might influence
participants’ decisions. To account for individual differences and repeated measurements, we also included a
random intercept for participant. Note that we incorporated the app predictor as an independent variable rather
than considering its interaction with other predictors. As noted in prior research [2, 41], introducing too many
variables to the model could lead to overfitting and multicollinearity issues, which may lower the validity of the
model. In our preliminary analysis, we also encountered convergence issues when including the interaction terms
involving app. Therefore, we decided to include only the main effect of app to maintain model interpretability.
For each model, the app with the largest mean value is chosen as the reference level for the app predictor.

As a result of the model selection process, we obtained final models that included the predictors group, mode
(or config), their interaction term, and app, as well as the random intercept for participant for turning-off behavior
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and saving efficiency analysis. For touch frequency analysis, we further included the remaining battery as a
predictor (See Appendix A for details).

4.4.2 Interview Data. We recorded the audio of the debriefing interviews and transcribed them into text. We
then adopted a bottom-up approach to analyze the data following the steps of thematic analysis [3]. After
familiarizing themselves with the transcripts, two researchers first independently highlighted the text segments
that were deemed interesting and created initial codes to describe the data, which resulted in a total of 385 codes;
next, the two researchers reviewed each other’s initial codes and collaboratively refined these codes; then, we
organized the refined codes into emerging themes through rounds of discussions with other team members. Our
analysis was centered on two aspects: (1) deriving insights from participants’ perceptions and experiences of the
visual indicators of the battery saver to complement the quantitative results; and (2) understanding participants’
expectations and preferences for saving battery on their mobile phones in real life.

5 Findings
We found that making the battery-saving status visible to users generally enhanced their experience and agency
during intensive mobile interactions. However, in certain situations, battery-saving indicators can inadvertently
introduce stress and frustration. In this section, we describe the findings in two parts: participants’ activities
during the battery-saving sessions (RQ1) and their expectations toward mobile battery saving modes (RQ2).

Table 3. Participants’ task completion, sessions they turned off the battery-saving mode, average timings of turning off the
saving mode, and overall battery-saving efficiency. RM and EM refer to regular and extreme saving modes, respectively.

Group Task Completion Rate Turning-off Rate Turning-off Timing Saving Efficiency

RM EM RM EM RM EM

PB 61.11 % 16.64 % 11.82 % 50.78 s 48.06 s 90.35 % 92.71 %
PS 70.83 % 8.01 % 18.64 % 29.34 s 51.60 s 94.04 % 88.55 %
PRS 61.11 % 5.97 % 16.34 % 75.17 s 54.90 s 97.66 % 91.52 %

5.1 Activities in Battery-Saving Sessions
A summary of the quantitative results from participants’ task completion, reactions to the saving mode (whether
and when they turned it off), and overall battery-saving efficiency is shown in Table 3. Below, we elaborate
on these results plus participants’ screen touch behaviors that indicate their task engagement. Each subsection
combines quantitative details together with qualitative insights learned from the interviews.

5.1.1 Task Completion. The average number of completed tasks (out of 6) is 3.67 (SD = 1.11) for PB, 4.25 (SD
= .60) for PS, and 3.67 (SD = 1.18) for PRS groups, without significant differences shown in the Kruskal-Wallis
test (H = 3.190, p = .203). This result suggested that the battery-saving indicators did not improve or hinder task
completion among participants. Nevertheless, participants in all three groups reported that their task progress
constantly influenced their tolerance of the performance drop caused by the battery saver, noting that they would
turn off the saving mode when they felt stressed about completing the current task (PRS-1, PRS-8, PS-25, PS-26,
PRS-28, PB-36), and that they would keep the saver on if they completed the task in advance (PRS-6, PRS-11,
PB-19). In addition, participants shared their thoughts on the difficulty of tasks, where they perceived tasks in
unfamiliar apps as more difficult (PRS-2, PRS-15).
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Table 4. The effect of saving mode, group, and app on participants’ turn-off behavior.

Variable Estimate Odds Ratio CIlower CIupper p-value

(Intercept) −1.15 0.32 0.14 0.70 0.005**
Mode = EM −0.47 0.63 0.28 1.38 0.248
Group = PS −0.98 0.37 0.13 1.05 0.061†
Group = PRS −1.34 0.26 0.08 0.81 0.020*
App = Candy Crush −0.62 0.54 0.25 1.17 0.117
App = Chrome −0.96 0.38 0.17 0.88 0.023*
App = Douyin −0.05 0.95 0.47 1.93 0.884
App = Google Maps −0.66 0.51 0.24 1.12 0.093†
App = YouTube −1.51 0.22 0.08 0.58 0.002**
Mode = EM × Group = PS 1.58 4.88 1.50 15.82 0.008**
Mode = EM × Group = PRS 1.72 5.57 1.57 19.77 0.008**

Model: glmer(Turn Off ∼ Mode * Group + App + (1 | Participant))
References: Group = PB, Mode = RM, App = Poe
Significance: † 𝑝 < 0.1, * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001

5.1.2 Reactions to the Saving Mode. To understand participants’ reactions to the saving mode, we examined
two aspects: whether they turned off the mode while performing the tasks (Turn Off) and when they turned it
off (Timing). We built a mixed-effects logistic regression model with participants’ group assignment (versions
of the saving indicator), the saving mode, and the app they were interacting with as predictors (see Table 4).
The results reveal that the effects of the indicator designs on turning-off behaviors are significantly influenced
by the interaction between the group and saving mode. To further understand this interaction, we examined
the main effects of the indicator designs within each saving mode. In regular saving mode (RM), PS group has
0.37 times the odds compared to PB group to turn off the saver (marginally significant), while PRS group has
0.26 times the odds compared to PB group (significant). However, controlling for app effects, switching to the
extreme saving mode (EM) significantly reversed the trend, with PS having 1.81 times the odds compared to
PB to turn off the saver (OR = 0.37 × 4.88 = 1.81), and PRS having 1.45 times the odds compared to PB group
(OR = 0.26 × 5.57 = 1.45). EM does not have a strong effect on PB group. Regarding the effect of different apps,
three apps by Google (Chrome, Google Maps, YouTube) show a significant or marginally significant decrease in
the odds of turning off the saver compared to the reference app (Poe).
To analyze when participants turned off the saver, we built a linear mixed-effects model with participants’

group assignment, the saving mode, and the app they were interacting with as predictors (see Table 5). In the
model, PRS group showed a marginally significant increase of 23.70 seconds in timing compared with PB. Notably,
Douyin shows a significantly decreased timing of −26.16 seconds compared to the reference app (Chrome),
indicating participants turn off the saver much earlier in Douyin. This is possibly due to the nature of short
videos that not only has a higher demand for performance, but also makes users sensitive to lags. Other apps do
not have a substantial influence on when participants turned off the saver.

Participants explained different ways they reacted to the saving mode during the post-study interviews. On the
one hand, some participants always kept the saver on to ensure sufficient battery for task completion. Regardless
of whether the saving statistics were available, they felt that knowing the battery is being saved provided an
assurance for task completion (PB-36, PS-12). Particularly, participants in the PS and PRS group considered the
amount of saved battery as a nudge as well as a sense of achievement (PS-7, PRS-11, PRS-28): “It’s necessary to
have the saving number to accommodate performance drop” (PRS-11).
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Table 5. The effect of saving mode, group, and app on participants’ timing of turning off the battery saver (in seconds).

Variable Estimate CIlower CIupper p-value

(Intercept) 65.72 43.50 88.05 <0.001***
Mode = EM −7.85 −27.62 11.90 0.433
Group = PS −14.44 −38.28 9.61 0.234
Group = PRS 23.70 −3.39 51.17 0.088†
App = Candy Crush −18.41 −41.72 4.94 0.120
App = Douyin −26.16 −47.58 −4.67 0.018*
App = Google Maps −9.76 −32.53 13.13 0.397
App = Poe −9.31 −30.78 12.43 0.388
App = YouTube −10.52 −39.35 18.38 0.472
Mode = EM × Group = PS 16.00 −15.14 46.92 0.308
Mode = EM × Group = PRS −11.43 −43.90 21.06 0.487
Model: lmer(Timing ∼ Mode * Group + App + (1 | Participant))
References: Group = PB, Mode = RM, App = Chrome
Significance: † 𝑝 < 0.1, * 𝑝 < 0.05, *** 𝑝 < 0.001

On the other hand, some participants reacted to the saving mode in more strategic ways to optimize the chance
for completing as many tasks as possible. First, due to the decreased performance, participants would choose to
turn off the saver to speed up task completion (PRS-1, PRS-6, PB-19, PRS-28). Interestingly, three participants
reported their behaviors were affected by the remaining battery. When they believed the remaining battery was
enough for the rest of the study, they chose to turn off the battery saver as a trade-off to improve performance
(PS-3, PS-25, PB-34). In contrast, participants may sacrifice performance when battery was about to run out, as
several of them reported being more tolerant of performance decrease when the battery was low or dropping
fast (PRS-2, PRS-8, PRS-15, PS-32). In the PB group, low battery generally made participants less tolerant to
performance drop (PB-16).

5.1.3 Saving Efficiency. Similar to timing, we used participants’ group assignment, the saving mode, and the
app they were interacting with as predictors to build the linear mixed-effects model to examine battery-saving
efficiency (see Table 6). In this model, the reference condition is RM mode with the PB group. Similar to the
turning-off behavior, participants’ saving efficiency was significantly influenced by the interaction between the
saving mode and group assignment. Under RM mode, PS participants showed 4.06% increase in saving efficiency
higher than PB without significance; while PRS participants exhibited a significant 7.30% improvement compared
to PB. However, when controlling for app, this trend reversed under EM mode. Compared to PB, there was a
decrease in saving efficiency: −8.72 for PS (𝛽 = 4.06 − 8.72 ≈ −4.66) and −8.85 for PRS (𝛽 = 7.30 − 8.85 ≈ −1.55).
Note that switching to the EM mode did not significantly influence the saving efficiency in PB group.
Across the tested apps, Douyin showed a significant reduction (9.88%) in saving efficiency compared to the

reference app (YouTube). Poe also showed a significant decrease (7.20%) in saving efficiency compared to YouTube,
while others did not show strong effects.

5.1.4 Screen Touch. To further understand how different versions of battery-saving indicator may influence
participants’ engagement with the device, we examined their screen touch behaviors. Focusing on the average
touches per minute, we used participants’ group assignment, the hardware configuration (two saving modes
configuration plus the default configuration), the app they were interacting with, and the remaining battery level
as predictors to build the linear mixed-effects model (see Table 7).
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Table 6. The effect of mode, group, and app on participants’ battery-saving efficiency (in percent).

Variable Estimate CIlower CIupper p-value

(Intercept) 94.63 88.81 100.45 <0.001***
Mode = EM 2.58 −2.96 8.12 0.361
Group = PS 4.06 −2.40 10.49 0.215
Group = PRS 7.30 0.77 13.82 0.029*
App = Candy Crush −4.31 −9.83 1.22 0.127
App = Chrome −1.42 −6.94 4.11 0.615
App = Douyin −9.88 −15.40 −4.36 <0.001***
App = Google Maps −3.37 −8.90 2.17 0.233
App = Poe −7.20 −12.72 −1.68 0.011*
Mode = EM × Group = PS −8.72 −16.57 −0.87 0.030*
Mode = EM × Group = PRS −8.85 −16.70 −1.01 0.027*

Model: lmer(Efficiency ∼ Mode * Group + App + (1 | Participant))
References: Group = PB, Mode = RM, App = YouTube
Significance: † 𝑝 < 0.1, * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001

Table 7. The effect of config, group, app, and remaining battery on participants’ touches per minute.

Variable Estimate CIlower CIupper p-value

(Intercept) 58.65 53.93 63.35 <0.001***
Config = EM −5.28 −9.42 −1.13 0.013*
Config = RM −2.00 −6.20 2.20 0.351
Group = PS 6.16 1.28 11.03 0.014*
Group = PRS 3.26 −1.62 8.13 0.189
App = Candy Crush −43.08 −46.49 −39.68 <0.001***
App = Chrome −15.75 −19.15 −12.35 <0.001***
App = Douyin −33.15 −36.56 −29.74 <0.001***
App = Google Maps −25.16 −28.57 −21.75 <0.001***
App = YouTube −38.41 −41.81 −35.00 <0.001***
Battery 0.18 0.04 0.31 0.010*
Config = EM × Group = PS −2.59 −8.56 3.37 0.394
Config = RM × Group = PS −2.29 −8.15 3.56 0.443
Config = EM × Group = PRS −1.57 −7.45 4.32 0.601
Config = RM × Group = PRS −0.29 −6.22 5.63 0.922
Model: lmer(Frequency ∼ Config * Group + App + Battery + (1 | Participant))
References: Group = PB, Config = Default, App = Poe
Significance: † 𝑝 < 0.1, * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001

There are several significant main effects in the results. First, we found the PS group showed a significant
increase of 6.16 touches per minute compared to the PB group, suggesting that the battery-saving indicator with
saving statistics might have encouraged more screen touches. However, this pattern was not observed in the
PRS group, likely because the continuous presentation of real-time saving statistics created a more direct and
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persistent awareness of battery usage, thereby tempering the impulse to interact unnecessarily with the screen.
Second, the remaining battery level showed a small but significant positive effect on touch frequency, indicating
that users tended to touch the screen more often when there was more battery left. In other words, they may
avoid screen touches when the battery was low. Third, compared to the reference app (Poe), all apps showed a
significant decrease in touch frequency, with Candy Crush exhibiting the lowest touch frequency, followed by
YouTube, Douyin, Google Maps, and Chrome. This can be possibly due to the text-based interaction on Poe, which
requires frequent keyboard input, whereas other applications primarily utilize touch gestures for navigation.
Nevertheless, the post-hoc pair-wise comparison further reveals that the touch frequency of any two apps was
significantly different from each other (all p < .05), with the exception of the comparison between Candy Crush
and YouTube being marginally significant (p = .080). These results suggested that each app elicited a distinct
pattern of touch interaction.

When comparing the saving mode to the default configuration, we found that under EM, there was a significant
decrease of −5.28 touches per minute, indicating that severe performance drop led to reduced touch frequency.

5.2 Expectations and Preferences for Battery Saving
By analyzing interview data related to participants’ expectations and preferences for saving battery in their daily
life, we organized the findings into three parts: (1) the trade-off between device performance and battery saving,
(2) how important saving battery is to them, and (3) the features they found helpful for battery saving.

5.2.1 Trade-off Between Device Performance and Battery Saving. When it comes to whether to prioritize per-
formance or the battery saving, participants often took different strategies to navigate this trade-off. Some
expressed a strong preference for performance over battery conservation, stating that they could only accept
battery savers that had minimal impact on performance (PRS-14, PRS-15, PS-32, PB-36), such as slightly lowering
the screen brightness. In contrast, some participants who were less sensitive towards performance change
adopted a “battery-first” approach, and they were willing to sacrifice performance in exchange of extended
battery life (PB-9, PRS-11). In some extreme cases, they would even shutdown their phone to save battery (PB-19,
PB-21). For example, PB-9 said “although it makes the phone slower, it is more important for me to save battery for
urgent situations.” Additionally, some participants sought to strike a balance between performance and battery,
adjusting their strategies depending on the interaction context. The remaining battery is generally considered in
the decision-making process (PRS-2, PRS-6, PRS-8, PRS-10, PRS-11). Other factors may also be considered by
individuals. For example, PRS-14 would prioritize battery when they are outside, while PRS-1 would prioritize
performance in games.

5.2.2 Perceived Importance of Battery Saving. Most participants agreed that battery saving is important, high-
lighting that saving mode can reduce low-battery anxiety (PRS-1, PRS-6, PRS-14, PB-21, PRS-28, PB-36), benefit
long-term battery health (PRS-8, PB-16, PB-18), and eliminate the need for bringing extra chargers or power
banks (PRS-6, PB-18, PS-32). Specifically, PRS-10 added that as mobile phone is an essential part of various daily
activities such as taking transportation, making payment, and keeping connected with others, saving battery is
extremely important, and PB-9 mentioned that saving mode is helpful in emergency. In addition, two participants,
PS-7 and PRS-28, acknowledged the positive impact of saving batteries on the environment over time.

On the other hand, other participants thought that battery saving is not important, especially future technologies
like superchargers (PS-12, PRS-14) will make saving mode unnecessary. PRS-11 added that “Mobile phones use
limited energy. For other scenarios like data centers and air conditioning, they use a lot of energy.” At a larger scale,
PB-17 thought that advancements in renewable energy generation would make it less important to save energy,
and stated that they always purchased a phone with the largest battery so that they would not need to worry
about battery saving.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 10, No. 1, Article 3. Publication date: March 2026.



Visualizing Power Mode • 3:17

5.2.3 Desired Features for Battery Saving. Reflecting on the study experience, participants shared their ideas of
how they would like their phone’s battery to be saved in daily life. Many participants wanted an automatic saving
mode, where the system could intelligently switch between different strategies based on interaction scenarios
and user preferences (PS-7, PS-12, PB-21, PRS-14, PB-36), partially as they do not want to learn about different
saving mechanisms due to the technical complexity (PB-17). Some of them expressed a desire for full control
over the extent of performance drop (PRS-1, PRS-2, PB-18, PRS-15, PB-20, PRS-28), while ensuring the device
can respond fast in urgent situations (PRS-6). They also expressed a need for more battery-saving options that
do not affect the performance of the phone. Responding to the brightness-lowering experience in the study,
although some participants noticed the change (PS-5, PS-7, PRS-11, PB-20, PS-32), they all felt such changes were
acceptable (PRS-1, PRS-2, PRS-14, PB-21, PS-32, PB-36). In addition, participants also mentioned other ways to
save battery, such as by disabling the Wi-Fi, Bluetooth and location services (PRS-1, PRS-10, PB-19, PRS-28). In
short, participants suggested that an ideal battery-saving system should provide flexible configuration options
to satisfy users’ needs for battery saving in various contexts, while offering an automatic mode for those who
prefer a more hands-off approach.

6 Discussion
Our findings showed that during intensive interactions with mobile phones at low battery levels, visual indicators
of battery-saving status can help users alleviate stress and effectively navigate their current tasks. However, the
impact of these indicators was closely tied to the extent of performance drop, where users could feel frustrated
if the performance degradation is significant. Drawing from these findings, we discuss the implications and
opportunities for balancing battery efficiency and user experience through the lens of user interface design.
Additionally, we reflect on lessons learned from our lab experiment, regarding what had worked well and what
can be improved, to inform future research seeking to capture user behaviors related to battery saving.

6.1 The Effects of the Battery-Saving Indicator
Our study showed that under RM (regular saving mode), the visual indicator of battery-saving status was effective
in encouraging participants to stay in the saving mode (i.e., less likely to turn off the mode) as well as increasing
battery-saving efficiency. Several factors may contribute to this effectiveness. First, the visual indicator provided
clear and immediate feedback about how much battery could be saved just within a few minutes, reinforcing
users’ awareness of how such a short period of performance downgrade can help with battery saving. This
information was likely to motivate participants to keep the saving mode on, as they could see the positive impact
of their choices on battery life. Similar findings were also reported in prior work on system visibility [30, 42, 43],
which has shown that users are more tolerant for performance limitations when they understand the rationale
and perceive tangible benefits.
Second, while the saving indicator helped mitigate potential frustration caused by performance drop under

RM, it became less effective and even adversely led participants to turn off the saving mode under EM, where
the performance of the device further degraded. Combining the interview findings, we suspect this was due
to several reasons. Partly, participants experienced frustration with the noticeable drop in performance, which
diminished their willingness to accept the limitations imposed by the extreme saving mode. The degradation
in functionality thus may have overshadowed the perceived benefits of battery conservation, leading them to
prioritize performance over battery life. For the PRS group, the real-time statistics demonstrated an even more
counterproductive effect: by making performance degradation immediately salient, it might make battery saving
a costly trade-off, leading users to deactivate the mode. Similar findings have been reported while studying
the associations between psychological impacts of delay on commuters and visual indicators of the real-time
transportation information [52]. Our analysis of touch frequency further supported this user observation, with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 10, No. 1, Article 3. Publication date: March 2026.



3:18 • Chenhao Hong, Xi Zheng, Minhui Liang, Junqiao Qiu, and Yuhan Luo

EM causing a significant reduction of over 5 touches per minute compared to the default configuration, suggesting
that the EM negatively impacted user engagement. Another possible reason, as PS and PRS groups brought up
during the interviews, was that, knowing the amount of battery that has been saved in prior sessions can help
them make strategic decisions to turn off the battery saver in later sessions to reclaim better performance: “It
made me braver to turn it off if I have already saved some battery” (PS-3).
Based on these observations, when applying battery-saving frameworks on mobile devices, designers and

developers could consider providing visual indicators of the saving status differently depending on the performance
degradation. For example, when the degradation is moderate, the indicators could highlight the concrete benefits
of battery saving, such as the amount of time left for different applications (e.g., “saved 5 minutes for browsing
or 3 minutes video watching”), similar to the strategies used in the recent study [31]. Conversely, when the
degradation is significant, it might be more effective to omit visual indicators altogether. Instead, designers could
focus on enhancing user control by allowing users to easily switch between saving modes based on their current
needs. This could involve a simple toggle or button that enables users to quickly revert to regular mode when
they require full device functionality.

6.2 Toward a Sustainable and User-Friendly Battery-Saving Interface
Drawing on our lab study and interviews, we see two promising directions for building sustainable and user-
friendly battery-saving interface: (1) framing battery saving as a reward for strategic interactions, and (2)
promoting motivation to save batteries by cultivating ecological awareness.

6.2.1 Battery-Saving as a Reward of Strategic Interaction. Our interviews revealed that many users enjoy making
strategic decisions to optimize battery and performance, a finding consistent with Choe et al.’s observation that
designers could enhance user satisfaction and efficiency on mobile devices by allowing users to customize their
settings according to individual needs [47]. Similarly, Froehlich et al. has employed game elements, such as points,
challenges, and leaderboards, to encourage sustainable behavior [20]. Building on these works, we envision
“battery-saving kits” that allow users to select combinations of strategies tailored to their interaction needs and
preferences. These kits could include options such as adjusting screen brightness, disabling Bluetooth, or limiting
background app activity, enabling users to create personalized battery-saving profiles. In addition, the kits could
be packed with a smart power analyzer, such as the one proposed by Datta et al. [11] to help users understand
their usage patterns and make recommendations for optimizing battery life. By allowing users to customize
their settings according to individual needs, designers could enhance user satisfaction and efficiency on mobile
devices [47]. This emphasis on personalized experiences aligns with Blom and Monk’s theory, which underscores
users’ broad expectation to receive tailored technology interactions [44].

6.2.2 Cultivating Ecological Awareness. In our study, users are primarily motivated by a utilitarian perspective,
seeking to extend their device’s battery life for their compensation-related tasks, with only two participants (PS-7,
PRS-28) bringing up environmental sustainability as a reason for saving battery in our follow-up interviews. To
shift this utilitarian perspective and increase their awareness of the importance of mobile battery saving at a
larger scale, designers could consider integrating concrete sustainability-related benefits into the battery-saving
application. With the similar approach used by Kjeldskov et al. [28], we could encourage users to adopt battery-
saving practices not only for their own benefit, but also for the greater good of the environment and society.
In other works [19], researchers have demonstrated the value of environmental sensing feedback in helping
users understand how their behaviors impact the world around them. Although the environmental benefits of
saving battery power on mobile devices cannot be measured directly, we can adapt existing models to estimate
ecological impact, such as equivalent carbon emission reductions or energy savings, and present these to users
in relatable terms. This approach has shown effective in some commercial applications. For example, Alipay’s
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Ant Forest app, which turns low-carbon actions into virtual saplings, combined with multi-dimensional rewards
(enjoyment, achievement, emotional attachment) sustain long-term engagement [38, 65]. Likewise, Kjeldskov et
al. demonstrated that comparative usage visualizations and social influence features markedly boost awareness
and motivation for energy saving [28]. By combining visible environmental impact, peer benchmarking, and
continuous mobile feedback, users could be inspired to save battery not just for personal gain but for broader
ecological benefit.

6.3 Lessons Learned From Studying Battery-Saving Behaviors in Lab Environments
While controlled laboratory experiments cannot fully capture the complexity of real-world battery-saving
behaviors, our study establishes an empirical foundation for subsequent field investigations in two key aspects:
reward model and task design.

First, to carry out an experiment in the field, one challenge is the ubiquitous charging resources may prevent
people from enabling the saving mode on their phones, especially for the tasks they must complete. Therefore,
we need to first convince users the importance of saving batteries on their phones. In addition to cultivating
ecological awareness as mentioned previously, our performance-based compensation model has demonstrated
effectiveness in motivating participants to adopt strategic thinking when balancing performance needs against
battery constraints. Although these strategies may not fully align with real-world decision-making processes,
they reveal fundamental behavioral patterns that persist across contexts such as low battery anxiety [64] and
loss aversion [48]. For instance, many participants voluntarily chose to persist with battery-saving mode during
less time-sensitive tasks, demonstrating similar behavioral patterns to those observed in other field studies [64].
Thus, even in a field study setting, establishing a clear incentive structure (e.g., through social recognition, or
environmental impact feedback) could effectively motivate sustained engagement with power-saving features
while maintaining ecological validity.

Second, battery consumption patterns vary significantly across different applications, and users may save
different levels of batteries depending on their preferred apps and interaction routines. This variability made it
challenging for consistent evaluation of saving efficiency across participants. In our study, the use of goal-oriented
tasks, such as answering specific questions from videos or navigating predetermined routes, created a standardized
framework that enabled straightforward comparison of battery-saving efficiency across all participants. These
controlled tasks ensured that each participant engaged in similar types and levels of smartphone interaction,
thereby eliminating the confounding effects of different app usage patterns. Thus, future research may focus
on either evaluating the saving efficiency for specific apps or develop app-agnostic evaluation metrics that can
normalize across diverse usage patterns.

7 Limitations and Future Work
First, before a field testing in real-life situations, the findings of this study cannot be generalized. Although we
attempted to simulate real-life scenarios by designing tasks in six apps from different categories and linking
task completion with compensation, the lab environment may not fully capture the complexities and nuances
of real-world usage. Second, the performance-based compensation could have introduced bias to participants’
behavior (as explained in Section 6.3). Third, while we examined most common app categories (See Section 3),
they did not cover every possible use case such as shopping and photo taking, due to the limitation of time and
lab environment. Relatedly, participants’ expectations of the study varied: two (PRS-6, PRS-14) thought that they
were in an experiment context, and the battery level would be safe, while another two (PRS-14, PB-36) mentioned
that they were too focused on the task to notice the battery saver or the indicator. Moreover, some participants,
especially those from PS and PRS groups needed to learn the new user interface of the battery saver. Under the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 10, No. 1, Article 3. Publication date: March 2026.



3:20 • Chenhao Hong, Xi Zheng, Minhui Liang, Junqiao Qiu, and Yuhan Luo

pressure of completing tasks within a limited time, this unfamiliarity could have influenced their experience and
performance in the study [8, 18, 60].

As the first step to examine the impact of UI design on user experience in a battery-saving context, our study
systematically documented nuanced behavioral patterns in how users respond to visual power-saving indicators
and established their tolerance thresholds across varying degrees of performance compromise. These findings not
only revealed how UI elements can be designed to shape battery-saving behaviors but also served as an important
empirical foundation for designing adaptive battery management systems in the future. Going forward, we plan
to introduce a customization system that allows users to set their own preferences for the battery-saving UI, as
described in Section 6.2. Furthermore, we aim to extend our study to a larger sample size in a real-life field study
to better understand the impact of the battery-saving UI over time.

8 Conclusion
This study explores in battery-saving scenarios where system performance drops, how UI designs that present
different levels of details about battery saving status can affect user experience and their reactions to the saving
mode. Our findings suggested that under moderate performance degradation, the real-time battery-saving
statistics can effectively enhance user experience while encouraging sustainable interaction behaviors compared
to the other two versions. But when the performance of the device drops aggressively, the indicator worsened
user experience and failed to improve saving efficiency. Through post-study interviews, we highlighted the key
aspects that influenced participants’ reactions to the saving mode, such as the sense of control and feedback
clarity. With the lessons learned, we further discussed how to build sustainable and user-friendly battery-saving
interfaces and how to carry this investigation forward through a field study.
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Appendix

A Model Selection Process

A.1 Turn Off
List of models we built to examine whether participants turned off the saver (Turn Off) using glmer:

base_model: Turn_Off ~ 1 + (1 | Participant)
model_1: Turn_Off ~ Mode + (1 | Participant)
model_2: Turn_Off ~ Mode + Group + (1 | Participant)
model_3: Turn_Off ~ Mode * Group + (1 | Participant)
model_4: Turn_Off ~ Mode * Group + App + (1 | Participant)
model_5: Turn_Off ~ Mode * Group + App + Rem_Battery + (1 | Participant)

ANOVA table for the models:

npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
base_model 2 493.94 502.89 -244.97 489.94
model_1 3 491.31 504.73 -242.66 485.31 4.6261 1 0.031489 *
model_2 5 494.60 516.97 -242.30 484.60 0.7119 2 0.700500
model_3 7 489.36 520.68 -237.68 475.36 9.2380 2 0.009863 **
model_4 12 483.55 537.24 -229.78 459.55 15.8132 5 0.007398 **
model_5 13 485.55 543.71 -229.77 459.55 0.0023 1 0.961666
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the results, we can see that the model with the lowest AIC is model 4, which is significantly better
than model 3. A likelihood ratio test also shows that model 3 is significantly better than model 1 (𝜒2 (4) = 9.96,
p = .041), which is also significantly better than the null model. Model 5 does not improve the fit of model 4.
Therefore, model 4 is selected for the analysis of Turn Off, which includes the interaction between group and
mode, as well as app as a fixed effect.

A.2 Timing
List of models we built to examine when participants turned off the saver (Timing) using lmer:

base_model: Timing ~ 1 + (1 | Participant)
model_1: Timing ~ Mode + (1 | Participant)
model_2: Timing ~ Mode + Group + (1 | Participant)
model_3: Timing ~ Mode * Group + (1 | Participant)
model_4: Timing ~ Mode * Group + App + (1 | Participant)
model_5: Timing ~ Mode * Group + App + Rem_Battery + (1 | Participant)

ANOVA table for the models:
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npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
base_model 3 804.57 811.83 -399.28 798.57
model_1 4 806.57 816.24 -399.28 798.57 0.0000 1 0.9983
model_2 6 806.87 821.39 -397.44 794.87 3.6958 2 0.1576
model_3 8 807.68 827.03 -395.84 791.68 3.1888 2 0.2030
model_4 13 810.52 841.97 -392.26 784.52 7.1601 5 0.2090
model_5 14 811.89 845.75 -391.94 783.89 0.6360 1 0.4252

Based on the results, none of the models significantly improved the fit of the previous model. Nevertheless, for
consistency, model 4 is selected for the analysis of Timing, which includes the interaction between group and
mode, as well as app as a fixed effect.

A.3 Saving Efficiency
List of models we built to examine when participants’ saving efficiency (in percent) using lmer:

base_model: Efficiency ~ 1 + (1 | Participant)
model_1: Efficiency ~ Mode + (1 | Participant)
model_2: Efficiency ~ Mode + Group + (1 | Participant)
model_3: Efficiency ~ Mode * Group + (1 | Participant)
model_4: Efficiency ~ Mode * Group + App + (1 | Participant)
model_5: Efficiency ~ Mode * Group + App + Rem_Battery + (1 | Participant)

ANOVA table for the models:

npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
base_model 3 5816.4 5829.8 -2905.2 5810.4
model_1 4 5814.5 5832.4 -2903.3 5806.5 3.8363 1 0.050155 .
model_2 6 5816.9 5843.7 -2902.4 5804.9 1.6538 2 0.437411
model_3 8 5815.1 5850.9 -2899.6 5799.1 5.7788 2 0.055610 .
model_4 13 5808.3 5866.5 -2891.2 5782.3 16.7607 5 0.004977 **
model_5 14 5810.2 5872.8 -2891.1 5782.2 0.1805 1 0.670908
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the results, model 4 is selected for the analysis of saving efficiency, as it has the lowest AIC and shows
significant improvement over the previous model. Model 4 includes the interaction between group and mode, as
well as app as a fixed effect.

A.4 Touch Frequency
List of models we built to examine when participants’ touch frequency using lmer:
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base_model: Touch_Freq ~ 1 + (1 | Participant)
model_1: Touch_Freq ~ Config + (1 | Participant)
model_2: Touch_Freq ~ Config + Group + (1 | Participant)
model_3: Touch_Freq ~ Config * Group + (1 | Participant)
model_4: Touch_Freq ~ Config * Group + App + (1 | Participant)
model_5: Touch_Freq ~ Config * Group + App + Rem_Battery + (1 | Participant)

Note that the predictor config here includes the default config in addition to the two saving mode configs.
ANOVA table for the models:

npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
base_model 3 11900 11915 -5946.8 11894
model_1 5 11887 11913 -5938.5 11877 16.7087 2 0.0002354 ***
model_2 7 11886 11922 -5935.9 11872 5.1460 2 0.0763057 .
model_3 11 11893 11950 -5935.6 11871 0.6611 4 0.9560388
model_4 16 11252 11335 -5610.1 11220 651.0263 5 < 2.2e-16 ***
model_5 17 11248 11335 -5606.8 11214 6.5886 1 0.0102634 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the results, model 5 is selected for the analysis of touch frequency, as it has the lowest AIC and shows
significant improvement over the previous model. Model 5 includes the interaction between group and config, as
well as app and remaining battery as fixed effects.

B Power Profile Values of Test Device
Below is the power profile file obtained from the device firmware. We added comments to the file to provide
corrections and clarifications for some of the values.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <device name="Android">
3 <item name="none">0</item>
4 <item name="ambient.on">24.2</item>
5 <item name="screen.on">81.5</item>
6 <item name="screen.full">252</item>
7 <item name="audio">37</item>
8 <item name="video">49</item>
9 <item name="camera.avg">192.1</item>
10 <item name="camera.flashlight">149</item>
11 <item name="radio.scanning">102.1</item>
12 <array name="radio.on">
13 <value>7.3</value>
14 <value>7.3</value>
15 </array>
16 <item name="modem.controller.sleep">0</item>
17 <item name="modem.controller.idle">85</item>
18 <item name="modem.controller.rx">98</item>
19 <array name="modem.controller.tx">
20 <value>128</value>
21 <value>140</value>
22 <value>197</value>
23 <value>266</value>
24 <value>345</value>
25 </array>
26 <item name="modem.controller.voltage">3700</item>
27 <item name="wifi.controller.idle">2.1</item>
28 <item name="wifi.controller.rx">125</item>
29 <item name="wifi.controller.tx">575</item>
30 <array name="wifi.controller.tx_levels">
31 <value>0</value>
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32 </array>
33 <item name="wifi.controller.voltage">4000</item>
34 <array name="wifi.batchedscan">
35 <value>.0002</value>
36 <value>.002</value>
37 <value>.02</value>
38 <value>.2</value>
39 <value>2</value>
40 </array>
41 <item name="gps.on">71.5</item>
42 <item name="bluetooth.controller.idle">4.6</item>
43 <item name="bluetooth.controller.rx">90</item>
44 <item name="bluetooth.controller.tx">114</item>
45 <item name="bluetooth.controller.voltage">4000</item>
46 <item name="cpu.suspend">6</item>
47 <item name="cpu.idle">17.5</item>
48 <array name="cpu.clusters.cores">
49 <value>6</value> <!-- number of big cores , should be 4 -->
50 <value>2</value> <!-- number of little cores , should be 4 -->
51 </array>
52 <array name="cpu.core_speeds.cluster0"> <!-- frequencies -->
53 <value>533000 </value>
54 <value>672000 </value>
55 <value>768000 </value>
56 <value>864000 </value>
57 <value>960000 </value>
58 <value>1056000 </value>
59 <value>1152000 </value>
60 <value>1248000 </value>
61 <value>1344000 </value>
62 <value>1440000 </value>
63 <value>1536000 </value>
64 <value>1632000 </value>
65 <value>1728000 </value>
66 <value>1824000 </value>
67 <value>1920000 </value>
68 <value>2002000 </value>
69 </array>
70 <array name="cpu.core_power.cluster0"> <!-- current in mA -->
71 <value>25</value>
72 <value>27</value>
73 <value>29</value>
74 <value>30</value>
75 <value>31</value>
76 <value>33</value>
77 <value>35</value>
78 <value>38</value>
79 <value>40</value>
80 <value>43</value>
81 <value>46</value>
82 <value>50</value>
83 <value>54</value>
84 <value>59</value>
85 <value>67</value>
86 <value>76</value>
87 </array>
88 <array name="cpu.core_speeds.cluster1">
89 <value>533000 </value>
90 <value>672000 </value>
91 <value>768000 </value>
92 <value>864000 </value>
93 <value>960000 </value>
94 <value>1056000 </value>
95 <value>1152000 </value>
96 <value>1248000 </value>
97 <value>1344000 </value>
98 <value>1440000 </value>
99 <value>1536000 </value>
100 <value>1632000 </value>
101 <value>1728000 </value>
102 <value>1824000 </value>
103 <value>1920000 </value>
104 <value>2016000 </value>
105 <value>2112000 </value>
106 <value>2208000 </value>
107 <value>2304000 </value>
108 <value>2400000 </value>
109 </array>
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110 <array name="cpu.core_power.cluster1">
111 <value>52</value>
112 <value>61</value>
113 <value>70</value>
114 <value>79</value>
115 <value>87</value>
116 <value>97</value>
117 <value>106</value>
118 <value>119</value>
119 <value>131</value>
120 <value>146</value>
121 <value>163</value>
122 <value>180</value>
123 <value>199</value>
124 <value>223</value>
125 <value>252</value>
126 <value>292</value>
127 <value>331</value>
128 <value>410</value>
129 <value>500</value>
130 <value>579</value>
131 </array>
132 <array name="gpu.speeds">
133 <value>100000 </value> <!-- actually unsupported -->
134 <value>221000 </value>
135 <value>351000 </value>
136 <value>455000 </value>
137 <value>552000 </value>
138 <value>650000 </value>
139 <value>754000 </value>
140 <value>845000 </value>
141 <value>949000 </value>
142 </array>
143 <array name="gpu.active">
144 <value>34</value> <!-- actually unsupported -->
145 <value>66</value>
146 <value>99</value>
147 <value>123</value>
148 <value>160</value>
149 <value>206</value>
150 <value>259</value>
151 <value>318</value>
152 <value>377</value>
153 </array>
154 <item name="battery.capacity">4905</item>
155 <item name="battery.typical.capacity">5000</item>
156 </device >
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