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Abstract
The HCI community has been actively developing and studying
the use of Personal Informatics (PI) systems. While celebrating
the headways, researchers have uncovered many unintended con-
sequences of using PI systems, such as data-induced stress and
obsessive tracking, but there has been a lack of systematic analysis
of these consequences and their underlying causes. In this work,
we reviewed 172 PI research articles, highlighting that tracking
and interacting with personal data can adversely affect individuals’
cognitive load, emotional well-being, social acts, and behaviors,
while also bringing practical challenges. By synthesizing the path-
ways through which these consequences occur, we recognized that
they arose from multiple aspects, including the data-centric design
ideology, variations in individuals’ tracking needs and literacy, the
social dynamics surrounding them, and the intention-behavior gap.
Reflecting on the findings, we discuss how to best leverage personal
data in our lives and propose a practice-oriented research agenda
to mitigate unintended consequences.

CCS Concepts
• Human-centered computing→ HCI theory, concepts and
models.
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1 Introduction
The past few decades have witnessed growing research on how
people collect, engage with, and utilize their personal data. In part,
the advancement of mobile and wearable sensing technologies has
made it possible for individuals to access and interact with diverse
information about themselves. More importantly, there is increasing
recognition of the potential benefits that these data could bring to
everyday health, well-being, and life quality [154, 155]. Since Li et
al. coined the term “personal informatics” (PI) in 2010, over 500
PI-related research articles have appeared in prominent HCI and
Health Informatics venues within a decade [61, 95, 170].

Looking back, we have seen PI evolve from assisting health as-
sessment [11, 80, 98, 133] and behavior change [35, 122, 148] to facil-
itating collaboration [33, 128, 239] and creative expression [6, 216].
While celebrating the progress made, findings from prior studies
have revealed that how people interact with PI systems does not
always align with what researchers initially expect. Unintended
consequences such as data-induced misunderstandings [26, 45],
emotional stress and peer pressure [48, 162], and unhealthy behav-
iors [54, 180] have been reported here and there. Yet, the nature
of these consequences, their underlying causes, and implications
for the field have not been fully articulated. Such an understanding
necessitates a comprehensive review of existing empirical findings
along with reflections on the setbacks in designing PI systems.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this light, we systematically reviewed and analyzed 172 PI-
related research articles involving the understanding of human ex-
perience with PI from 2010 to early 2024 in prominent HCI venues.
Following the PRISMA guideline [218], we meticulously screened
articles that spotted unintended consequences from tracking and
interacting with personal data in their empirical findings. Differing
from existing reviews of PI literature that focused on descriptive
summarization of research topics, methodologies, and design im-
plications [55, 61, 65, 95, 235], our goal is to synthesize the conse-
quences of using PI systems that can negatively impact individuals
or were unanticipated by researchers. Drawing on their study con-
texts, we also aim to critically examine their underlying causes
drawing on the study contexts. Specifically, this review seeks to
answer two research questions:

• RQ1.What unintended consequences, reported in existing
PI literature, negatively impact individuals or were not an-
ticipated by researchers and designers at the outset?

• RQ2.What are the causes of these consequences?

Through iterative analysis, we found that although PI systems
are designed with good intentions (e.g., promoting self-knowledge,
positive behavior changes, and effective care), tracking and in-
teracting with personal data often adversely affects individuals’
cognitive load, emotional well-being, social interactions, and be-
havioral outcomes, and introduces practical challenges. Individuals
are imposed with burdens in collecting and interpreting the data; in
worse cases, they experience frustration, guilt, and obsession with
the data. These negative emotions can induce negative behaviors
that are counterproductive to the goals of tracking. Additionally,
data can bring tensions among multiple stakeholders with unreal-
istic expectations, interpersonal conflicts, and power asymmetry.
Grounded in the empirical evidence, we traced back the origins and
discussions of these consequences in the literature, and recognized
that each consequence is not caused by one specific reason but
stem from in multiple aspects, including the data-centric design
ideology, variations in individuals’ tracking needs and literacy, the
social dynamics around them, as well as the gaps between their
intentions and behaviors. Particularly, we highlighted that data
cannot fully represent real life, quantification can backfire, indi-
viduals’ experiences with PI systems are largely shaped by their
healthy literacy and data comprehension ability, humans relapse
easily, and sharing personal data is subject to broader social and
cultural structures.

In this review, our goal is not to diminish the value of data in
PI but rather to encourage a more practice-oriented approach that
aligns technology developments with the complexities of human
behaviors and their broader socio-cultural surroundings. Our re-
flections led to a thorough discussion of opportunities to mitigate
the challenges and negative impacts of designing and building PI
systems. By advocating “data in practice,” we see data as lived and
data sharing as socially and culturally conditioned. Moreover, we
discuss the implications of leveraging PI to empower rather than
merely persuade individuals.

2 Backgrounds
2.1 A Brief Overview of Personal Informatics

(PI) Research
Before the emergence of the term “personal informatics” in 2010 [138],
the practice of collecting and utilizing personal data dates back sev-
eral decades ago and has been studied in multiple fields outside
HCI, including psychology, medicine, and behavioral science [81,
103, 137, 172, 175]. Traditionally, this practice was called “self-
monitoring,” which is commonly employed in clinical settings for
assessment purposes [129, 175]. For example, clinical diagnoses and
treatments could be improved by collecting and analyzing data from
patients’ activities and physical status [175]. In addition, consis-
tently monitoring a behavior could lead to changes in that behavior,
known as reactive effects [103]. Hence, self-monitoring also serves
therapeutic purposes to encourage positive behavior change.

As mobile devices, sensors, and wearable trackers rapidly ad-
vanced in the late 2000s, it became easier to collect various types
of personal data, such as step counts, heart rates, location, and
environmental factors (e.g., temperature, and air condition). As a
result, numerous digital tools for personal data collection emerged,
drawing the attention of HCI researchers to examine how such
tools play parts in people’s daily life [22, 35, 102, 140, 144]. Embrac-
ing a human-centered approach, HCI researchers have centered
their studies on the interaction and relationships between humans
and their data, expanding the area with new topics and themes be-
yond the assessment and therapeutic purposes that prior research
centered on. Nowadays PI has a broader range of applications and
serves a variety of goals, such as satisfying curiosity [25], facili-
tating social interaction [58], archiving personal mementos [97],
and living a mindful lifestyle [6]. As the community advocates
for tracking more types of data to realized a “fully quantified-self”,
some researchers also brought up the situations where self-tracking
can be misused [85] and data can be misinterpreted [48]; in worse
cases, tracking can even trigger negative behaviors [180]. These
findings motivated us to take a closer look at potential unintended
consequences from the use of PI systems in a systematic way.

2.2 Existing Reviews of of PI
There have been several reviews in PI, including mapping or scop-
ing reviews and systematic reviews. Most commonly, we see re-
views aim to inform technology designs for health and wellbe-
ing [55, 65, 90, 106, 125, 235]. For example, Klasnja et al. summa-
rized mobile health interventions and their design features (e.g.,
automatic sensing, symptom monitoring, reminders) implemented
for different health conditions [125]. Feng et al. outlined the bene-
fits and drawbacks of the clinical use of PI by reviewing 67 studies
involving patients, health professionals, and caregivers [65]. Some
reviews contributed to design implications for specific technical
domains, such as goal setting [55], personal data visualization [169],
and ethical concerns in personal data tracking [226]. Additionally,
a review from Ayobi et al. used grounded theory to analyze the
methodological differences among 20 PI literature, which identified
three research streams that are psychologically, phenomenolog-
ically, and humanistically informed [3]. Although these reviews
have characterized the recurring themes from previous literature,
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they focused solely on a subarea of PI with less emphasis on how it
is interwoven within diverse social and cultural contexts.

The most comprehensive and up-to-date reviews are Epstein
et al.’s scoping review covering over 500 PI research articles [61],
and Kabir et al.’ meta-review on the facilitators and barriers for
PI systems with over 200 literature [94]. Both reviews surfaced
the motivation, methods, type of contributions, and application
domains of prior literature, and also highlighted several issues in
existing designs of PI systems, such as privacy concerns, ethics
dilemmas, adoption challenges, and data capture burdens [61, 94].
While these reviews serve as important resources for navigating
the field, they primarily integrated prior work through a descriptive
lens and thus did not engage in deep critical reflections on where
unintended consequences arose from and their underlying causes.

In short, our review differs from existing ones in (1) focusing
on unintended consequences from tracking and interacting with
personal data; (2) in-depth synthesis of the causes of these conse-
quences; and (3) a practice-oriented research agenda to mitigate
unintended consequences in PI systems and ways to account for
human activities that are enmeshed within a range of social inter-
actions and mutually constitutive with their contexts.

3 Methods: PRISMA Stage
To ensure the rigor of the literature review process, we followed

the five-stage PRISMA guideline [218] to search, screen, assess, and
analyze the literature. This process is illustrated in Figure 1.

3.1 Identification: Keywords Searching
As the first step, we identified a list of keywords relevant to PI from
prior literature (e.g., “self-tracking,” “self-monitoring,” “quantified-
self,” “lifelogging,”) [25, 138, 154, 155, 198, 228], as well as terms
describing a specific domain of personal data tracking (e.g., “ex-
ercise tracking” [35, 148, 156], “food tracking” [147, 150], “sleep
tracking” [22, 102] ).

We target the top 20 HCI journals and conferences as of February
2024 [206], based on Google Scholar metrics 1 (e.g., CHI, IMWUT,
CSCW, DIS), together with two additional conferences focusing on
human use of computing technologies (i.e., EAI Pervasive Health,
Mobile HCI ). We visited each of the venues’ official websites and
recorded their publication libraries, which include the ACM Digital
Library, IEEE Xplore, Scopus, Taylor & Francis Online, and Springer
Link. Across the databases, we used the same set of keywords
and applied the same filter (to select full research articles). All the
keywords, venues, and databases are listed in Table 1.

3.2 Screening
Our literature search concluded in February 2024, resulting in 792
papers. After removing the duplicates caused by multiple editions,
we collected 785 unique records.

3.2.1 Screening procedure and results. Each paper underwent in-
dividual review and screening by four researchers, consisting of
two university faculties and two graduate students. Each researcher
independently assessed the titles, keywords, abstracts, and full texts

1Google Scholar uses h5-index and h5-median to compare and rank conferences
and journals; each of these metrics is calculated based on the largest number and the
median of the citation counts of the venue over the past five years, respectively [205].

of all papers. In cases where disagreements arose, we collectively
reevaluated the paper through our routine group meetings. Our
initial screening excluded 622 records that were deemed irrelevant
to PI (including 86 resolved disagreements) and tabled 30 papers for
further discussion. We then conducted another round of screening
following the same procedure and excluded 14 tabled papers. At
the end of the screening stage, 179 papers were left. During this
process, we had extensive discussions on what the scope of PI re-
search covers, what unintended consequences entail, and how to
determine if a paper provides sufficient information about such
consequences. These discussions led us to iteratively refine our
inclusion and exclusion criteria described below.

3.2.2 Inclusion and exclusion criteria. In the stage-based model,
Li et al. highlight that data collection and reflection are two core
aspects of PI, because effective PI systems should help people “col-
lect necessary personal information for insightful reflection,” which
ultimately lead to positive behavior change [138]. This process,
according to Lupton’s description of self-tracking culture, should
be carried out regularly instead of a one-time interaction with the
data [154]. Later, Rooksby and Epstein et al. further extended PI as
“lived informatics,” acknowledging that people engage with their
personal data in a variety of ways for different purposes, in which
they do not necessarily aim for behavior change but may also seek
to satisfy curiosity, document activities, engage in social collabora-
tions, etc [63, 198]. Focusing on the lessons learned from human
experience with PI, we developed two inclusion criteria:

Criteria 1: An article must study how individuals engage with
(e.g., collect, curate, reflect on, act upon, make use of) data that are
relevant to their behaviors, feelings, thoughts, or other aspects of daily
life over time.

Criteria 2: An article must contribute to empirical understandings
of human subjects, reflecting the perspectives of the primary user
(whose data are collected) or other stakeholders (e.g., who uses the
data), such as their attitudes, preferences, intentions, and behaviors.

More importantly, wemeant to identify “unintended consequences”—
findings that arose from the design of PI systems not working as
expected by researchers, or instances where using PI systems led
to adverse effects on individuals. These consequences might not be
the primary findings of the literature, but there should be sufficient
information and contexts for understanding what happened with
participants regarding tracking and interacting with their personal
data. Thus, we developed the third inclusion criteria:

Criteria 3: An article must explicitly report at least one unintended
consequence of using PI systems in its findings, which reveals the
limitations or drawbacks of tracking and interacting with personal
data. The findings can be quantitative, such as statistical test results,
or qualitative, based on participants’ self-reports, but must provide
sufficient information connected to the PI practice.

With the above criteria, we excluded 547 articles that were ir-
relevant to PI (e.g., using eye/gesture tracking in usability studies,
one-time collection of personal data without over-time engagement,
public surveillance) or did not involve human subjects (e.g., analyz-
ing existing data to identify collective patterns without confirming
with end-users, assessing the accuracy of data tracking systems
without revealing user perspectives, literature or app review), and
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Figure 1: The paper inclusion process following the PRISMA guideline.

Table 1: The search keywords and filters in our SLR (note that we did not restrict the publication date).

Search within Keywords query Publication venue Article filter

Title, abstract,
author keywords

“personal informatics” OR
“self-monitoring” OR
“self-tracking” OR “personal
tracking” OR “quantified
self” OR “lifelogging” OR
“personal analytics” OR
“health tracking” OR
“exercise tracking” OR
“mood tracking” OR “sleep
tracking” OR “food tracking”
OR “productivity tracking”

ACM Digital Library∗ (12 venues)
CHI OR CSCW OR IMWUT/Ubicomp+ OR DIS OR PACM HCI𝑠 OR TOCHI OR UIST
OR IUI OR VRST OR AUTOMOTIVEUI OR EAI Pervasive Health OR Mobile HCI

IEEE Xplore (4 venues)
Transactions on Affective Computing OR International Conference on Human Robot
Interaction OR International Conference on Human-Machine Systems OR Virtual
Reality Conference

Scopus (3 venues)
International Journal of Human-Computer Studies OR International Journal of
Interactive Mobile Technologies OR HCI International

Taylor & Francis Online (2 venues)
International Journal of Human–Computer Interaction OR Behaviour
Information Technology

Springer Link (1 venue)
International Journal of Universal Access in the Information Society

Article type:
Research
Article

∗ The venues included in the filter under the ACM Digital Library are listed in abbreviated form for simplicity (e.g., CHI stands for ACM CHI Conference on Human Factors in
Computing Systems, VRST stands for The ACM Symposium on Virtual Reality Software and Technology).
+ Prior to 2017, the conference now known as the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) was called the Ubiquitous Computing (UbiComp),
which was included in our search and later merged with IMWUT.
𝑠 PACM HCI stands for Proceedings of the ACM on Human-Computer Interaction, a journal series launched in 2017 to publish articles accepted to top HCI conferences such as CSCW
and GROUP.

75 articles that did not provide sufficient information related to
unintended consequences.

3.3 Quality Assessment
In systematic reviews, quality assessment is a critical step to en-
sure that the included studies used rigorous methods and produced
valid results [107, 143]. Although the PRISMA guideline for quality
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assessment is designed mainly for evaluating clinical interventions,
which may not be directly applicable to HCI research [197], we
believe it is still important to assess the quality of all included stud-
ies to ensure that they used rigorous methods and produced valid
results [107, 143]. We carefully examined the introduction, method,
and results sections of the 179 literature, and did not exclude any
records as they all had clear research questions or goals, methods,
and presentation of results.

3.4 Data extraction
In this step, all the researchers in the team worked together to
go through each paper and prepare the datasets for later analysis.
First, we extracted the metadata, including the paper’s research
questions, participants’ composition, study location, method, and
data analysis approaches, key findings, and discussion points. Next,
two researchers focused on the extracted key findings from the
metadata to highlight information related to unintended conse-
quences resulting from interacting with PI systems. During this
process, we constantly referred back to the original articles and
added additional notes to make sure the information was accurate
and comprehensive. As a result, our extracted data included original
excerpts from the papers, narratives we wrote, and notes we added
to provide contexts (the full list of extracted data can be found in
the supplementary materials). Upon a close reading of each paper,
we excluded seven additional papers that were deemed not eligible.
Therefore, a total of 172 research articles were included for analy-
sis. To ensure accurate, nuanced, and context-aware extraction of
these highly specialized qualitative data, this step was completed
manually by researchers without any AI tools.

3.5 Literature Analysis
We divided our literature analysis into three parts. In the first part,
we characterized the literature regarding the publication trends,
target population, study location, and data analysis methods. In the
second part, two researchers conducted an inductive, relexive the-
matic analysis to sort out the nature of unintended consequences
from tracking and interacting with personal data. We used a spread-
sheet to conduct the initial coding, where each of usworked through
the excerpts of all the literature, highlighting segments that were
potentially relevant and interesting, and assigned them with labels
that are analytically meaningful (e.g., “cognitive burden to manage
and make sense of multiple data streams in fertility tracking”). If
we considered an excerpt or narrative not informative enough, we
referred back to the original texts of the literature. Upon comparing
and combining our initial codes, we generated a list of 380 codes.
Due to the iterative nature of the analysis, we did not compute the
inter-reliability of the codes [163]. Through rounds of discussions,
we integrated these unintended consequences into five categories—
cognitive load, emotional wellbeing, social acts, practical challenges,
and behavioral outcomes. This process followed the principles of
reflexive thematic analysis steps [13, 31].

In the third part, we traced back the origins of these conse-
quences to understand how and why they occurred in the first
place. Three researchers collaborated on the analysis and followed
a similar approach as in the second part. Our analysis showed that

rather than stemming from a single cause, each unintended conse-
quence resulted from multiple interconnected reasons. For example,
individuals with eating disorders often experience stress and frus-
tration from calorie tracking, which is a result of overdependence
on data to validate their goals and progress as well as the difficulty
in sustaining a healthy eating pattern despite their awareness of
its importance [54]. From this case, we derived causes involving
“unhealthy reliance on data” and“difficulty in converting intentions
to real-world behaviors.” Taken all the causes derived, we assessed
their relevance and importance, and refined each of them in a more
concise and informative way. Lastly, we wove together the analytic
narrative to report the prominent findings.

4 Findings
In this section, we first summarize the characteristics of the lit-
erature and then answer our research questions by describing an
overview of the unintended consequences of interacting with PI
and their underlying causes.

4.1 Literature Characteristics
Our literature analysis showed that PI research involving human
subjects has been rising over the past decade, with a notable surge
since 2015 and 2017. As Figure 2 (a) shows, the majority of literature
is published in the ACM community, with CHI (n = 75, 43.60%),
IMWUT/Ubicomp (n = 30, 17.44%), and CSCW/PACM (CSCW) (n
= 27, 15.70%) being the most prominent, followed by DIS (n = 17,
9.88%), International Journal of Human-Computer Studies (IJHCS;
n = 8, 4.65%), etc.

Existing PI research was predominantly conducted in Western
regions (see Figure 2 (c)), with almost half of them in the US and
UK. In addition, 55 papers (31.98%) did not explicitly specify their
study locations, which we labeled as “unspecified.” To speculate
their study regions, we further reviewed these papers for context
clues (e.g., whether the study was conducted in person, currency
of compensation) in combination with the authors’ affiliations. We
found that 29 still fall within the Western regions, adding the total
proportion of Western-centric studies to over 70%.

For the target users (see Figure 3), while early research often
studied the general population, the growing interest in PI within
the HCI community has led more research to focus on specific
populations over the years. These groups include individuals with
health conditions (n = 52, 30.23%), such as mental health issues
(e.g., [157, 184, 212, 232]), diabetes (e.g., [70, 101, 104, 188]), fertility
concerns [39, 40, 126], migraine [89, 182, 208], irritable bowel syn-
drome (IBS) [28, 99, 207], and Parkinson diseases [164, 166, 219];
vulnerable groups (n = 71, 41.28%) who are at a higher risk of
facing discrimination, exclusion, and unequal treatment due to
their socioeconomic status, age, gender, ethnicity, race, and other
intersectionalities, such as racial and ethnic minorities [161], eco-
nomically disadvantaged individuals [200, 202, 203], people from
the immigrant community [45]; specific workforce (n = 19, 11.05%),
such as office workers (e.g., [64, 122]), athletes (e.g., [128, 191]),
and gig workers (e.g., [236]); and among multiple stakeholders (n
= 29, 16.86%) by involving patients and healthcare professionals
(e.g., [28, 30, 239]), care receivers and caregivers (e.g., [42, 91, 188]),
as well as parents and children (e.g., [185, 186]).
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Figure 2: Publication trend of personal Informatics (PI) empirical studies with human subjects.

Figure 3: Participants who were involved in the empirical studies (one paper may involve multiple groups of participants).

In addition, we grouped the literature based on their description
of data analysis procedures: quantitative- andmixed-method papers
applied one or more statistical tests; papers that provided only
descriptive statistics were not considered to have a quantitative
component. Majority of the research studies employed qualitative
methods (n = 121, 70.35%) such as interviews (e.g., [48, 78, 180]) and
co-design workshops (e.g., 14, 115, 150) to understand how people
engage with and make use of PI systems. Mixed method analysis (n
= 49, 28.49%) was also commonly seen in field studies (e.g., [116, 122,
142]), where researchers analyzed both quantitative (e.g., comparing

people’s intention and behaviors before and after tracking) and
qualitative data (e.g., subjective experience from interviews). Only
two (1.16%) are pure quantitative research [2, 76]. Note that we
considered a paper to have quantitative components only when
one or more statistical tests were applied.

4.2 RQ1: Unintended Consequences
Here, we describe how tracking and interacting with personal data
may not work as researchers initially anticipated and can adversely
affect individuals in several aspects. In Table 2, we list the five
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groups of unintended consequences, with the number of instances
that emerged, enactment from the literature, and examples with an
original data excerpt.

First, collecting and integrating data from multiple sources adds
to cognitive burdens, as many types of data can not be automati-
cally captured, especially food information often requires intensive
manual logging [38, 147, 211], and subjective measures that indi-
viduals found difficult to articulate, such as mood and sleep qual-
ity [102, 135, 187, 231]. While collecting these data often requires
manual efforts, their relevance to individuals’ primacy concerns
and interests is not guaranteed [102, 147, 178]. This burden often
extends to the next stage of making sense of the captured data,
often with misinterpretation of one’s situation, such as drawing
false conclusions about what influences one’s health symptoms [49]
or endless uncertainty about what leads to their conditions [26].

Second, it is commonly observed that tracking can lead to nega-
tive impacts on individuals’ emotional well-being, such as stress
about their data not looking good, frustration with their perfor-
mance, and guilt for not meeting their goals or others’ expectations
(e.g., weight loss, and regular exercise) [91, 216]. These negative
emotions are also observed among caregivers, often family mem-
bers, such as parents who care and worry about their children’s
health and life [91, 104]. In some cases, individuals may become
overly obsessive with tracking, where the data dominate their focus,
leading them to intensely check the captured numbers and con-
stantly seek new measures [39, 104, 215]. Such obsessed tracking
can further heighten their negative emotions surrounding the data.

Third, tracking and sharing personal data can influence individu-
als’ social acts, encompassing tensions amongmultiple stakeholders

Table 2: Unintended consequences of tracking and interacting with personal data on individuals (a full list of details can be found in the
supplementary material). Note that one article can cover multiple consequences.

Consequences Enactment from the literature Example

Cognitive
load
(n = 72)

Data collection and integration
burden (e.g., [25, 38, 138]).

“60% participants with prior journaling experience reported they sometimes did not journal a
meal with their prior technique because it was too difficult.” [38].

Difficulty in making sense of the data
and potential misinterpretation (e.g.,
[26, 42, 142]).

“They tried to correlate other habits and factors (e.g., stress, smoking, sexual activity, age, and
genetics) with symptoms (e.g., irregularity in menstruation) to explain or justify what they are
experiencing. [...] at times it became difficult to differentiate between the symptoms of PCOS
and the effects of different treatments or medications” [26].

Emotional
well-being
(n = 55)

Negative emotions, such as stress and
guilt (e.g., [158, 216]) for individuals
or their caregivers (e.g., [91, 104]).

“Students commonly experienced personal guilt and disappointment in themselves, as well as
the social pressures, stigma, and embarrassment they felt regarding their data” [105].

Obsessive tracking, such as intensely
checking the data and constantly
seeking new measures (e.g.,
[39, 104, 215]).

“Women track multiple things and select the ones they will deposit their hopes in case the
others give not encouraging results. They also start seeing any symptom as a possible measure
to track” [39].

Social
acts
(n = 42)

Tensions among multi-stakeholders,
such as unrealistic expectations,
interpersonal conflicts and power
asymmetry (e.g., [167, 188, 208]).

“Some providers worried about unrealistic patient expectations regarding a provider’s ability
to use the system and interpret the data, [...] Patients and providers also wanted to ensure their
goals are considered and pursued, which could prompt disagreement and frustration if patient
and provider goals are not easily aligned” [208].

Reinforcing societal stigma or
discrimination associated with
specific populations (e.g.,
[68, 174, 219]).

“So far, we have explored how modes of tracking that have existed for the last century crucially
inform the design of contemporary menstrual apps [...] These tools often reproduce a common
stigma around menstruation through their use of coded language and jokes” [68].

Discomforts with unconventional
tracking methods in social settings
(e.g., [113, 124, 233]).

“Seven participants noted that they would be inclined to use only touch in the public space for
two main reasons: (1) they did not want to disturb others and (2) they were afraid that
surrounding people might feel awkward seeing them verbalizing health-related queries” [124].

Behavioral
outcomes
(n = 19)

Failing to promote or sustain positive
behaviors (e.g., [19, 122, 165]).

“The improved productivity of NF participants dropped immediately after the feedback was
withdrawn. From the result, we can conclude that the distraction emphasized feedback can
help people improve their productive rate, but this behavior change might not be sustained
when the feedback is withdrawn” [122].

Negative or unhealthy behaviors
counterproductive to the tracking
goals (e.g., [54, 180, 234]).

“Participants who had not yet committed to quitting said that registering resisted cigarettes
made them crave a cigarette even more. Thus, the app sometimes had counter-productive
effects. Ironically, one participant rewarded himself with a cigarette for resisting one” [180].

Practical
challenges
(n = 25)

Low engagement regarding the
limited usefulness or instrumental
benefits of the data (e.g.,
[15, 118, 183]).

“Participants who were indifferent showed confusion and negativity when asked what they
think of the story. To Q1, they replied with confusion. To Q3, they denied that the video
represents or reflects them and didn’t relate the video to their personal experience. Their
answers are all brief, adding up to fewer than around 80 words (M=42.8, SD=27.1), showing a
low level of engagement” [183].

Physical discomforts or
inconvenience to daily activities (e.g.,
[119, 191, 192]).

“The most common problem is physical discomfort: this is relevant to specific sports (e.g.,
wearing a bracelet when climbing interferes with movements and the device can be easily
damaged)” [191].
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(e.g., patients and doctors, coaches and athletes)—unrealistic expec-
tations, interpersonal conflicts, and power asymmetry. A typical
example is in the context of doctor-patient communication, where
patients hope to share as much data as possible to obtain personal-
ized treatment, but doctors often face institutional, resource, and
time constraints to review and analyze the data [28, 178]. Addi-
tionally, sharing data among multiple people can reinforce the
societal stigma or discrimination associated with specific popula-
tions, particularly among vulnerable groups (e.g., individuals fac-
ing women’s health issues) [26, 62, 237]. For some individuals, un-
conventional tracking methods, such as speech input and smart
glasses [147, 149, 233], can be socially uncomfortable, as they may
inadvertently overshare personal information in public settings.

Fourth, although many PI systems were initially designed with
the intent of promoting positive behavior changes (e.g., productiv-
ity improvement, smoking cessation), several studies did not find
the changes they anticipated. Among the 56 papers aimed at achiev-
ing behavior changes, 27 (48.21%) examined individuals’ behaviors
through controlled experiments, but nearly half of these studies
(12, 44.44%) did not observe statistically significant differences in
the target behaviors (e.g., [1, 43, 44, 148, 210, 236]). For example,
supporting daily exercise with a smart speaker did not lead to bet-
ter adherence compared with a regular mobile app [148]; sharing
physical activity with significant others did not necessarily make
individuals more willing to improve [236]. In worse cases, some
tracking tools even contributed to negative or unhealthy behaviors,
as shown in the literature, an app aiming to help monitor smoking
behaviors can trigger the urge to smoke [180], people sometimes
prioritize achieving a fitness image by reducing calorie intake at
the expense of their health needs [27], etc.

Lastly, several practical challenges emerged regarding low en-
gagement with PI systems, where individuals are motivated by
potential behavior change or instrumental benefits (e.g., collecting
records for social interaction) expressed limited and faded use-
fulness of the tracked data [15, 118, 183]. Occasionally, tracking
personal data can induce physical discomforts or inconvenience,
mainly with tracking devices that are heavy to wear [119, 191, 192].

4.3 RQ2: The Causes of Unintended
Consequences

Our analysis showed that there is no one-to-one mapping between
specific causes and the aforementioned consequences; instead, these
consequences stem from multiple aspects of researchers’ design
ideology, variations in individuals’ tracking needs and literacy, and
the social dynamics around them, as well as the gaps between their
intentions and behaviors. Below, we elaborate on these aspects by
synthesizing the takeaways from the literature.

4.3.1 The Data-Centric Design Ideology. Since the “quantified self”
movement opened up the opportunities to “know yourself through
numbers,” personal data have been granted authority and power
that symbolize whether people have achieved their goals, what
are superior versus inferior values, and what constitutes one’s
identity and self-image [25, 27, 130, 215]. Within this strand that
strives to gather objective and trustworthy information from per-
sonal data, an implicit assumption is that more data are likely to
generate more knowledge about ourselves. Indeed, studies have

found that integrating multiple data can help individuals uncover
unknown relationships (e.g., food consumption and stomachache
symptoms [99]), identify outliers (e.g., sleep patterns in different
locations [24]), and even perform predictions (e.g., blood glucose
predicted by nutrients intake [46]). However, in the meantime, the
limitations of the “data-centric” ideology have emerged as empirical
findings accumulated, which often led to burdens on individuals’
cognitive load and emotional well-being, and can further heighten
stigma associated with specific populations and negative behaviors
reported in 4.2. The underlying pathways are mainly three-fold.

First, data are derived measures but not direct representa-
tions of everyday life. The complicity of human behaviors and the
uncertainty of the surrounding environments make it difficult to
simplify everything into numbers [25, 62, 112, 116, 117, 142, 234].
As examples, step counts capture how far a person walks, but can-
not truly represent their physical activity levels [74, 121]; a photo
of a dish captures the food components present, but does not reflect
what a person actually consumes [38, 147]; heart rate variability
captures one’s physiological stress, but may not be the best metrics
to characterize their mental stress [48]; the usage of digital devices
captures howmuch time a person spends on different apps, but may
not represent how productive they are [122]. Thus, even though
the data itself is accurate, the “data-driven insights” can be unre-
liable and even lead individuals to draw false conclusions about
themselves. In several studies [46, 48, 99], including the evaluation
of Health Mashup mentioned earlier [8], researchers have observed
instances where participants noted that personal data contradictory
to real-life situations.

Second, collecting more data involves more efforts, but does
not always bring more knowledge. In part, there are still many
types of data that cannot be automatically captured, especially qual-
itative and subjective data, such as mood and sleep quality [102,
135, 187, 231]. Collecting these data often requires manual efforts
or wearing additional on-body devices, but the relevance of the
data remains unclear [102, 147, 178]. Particularly, collecting multi-
stream data involves both cognitive and behavioral efforts, but
not all collected data are relevant to the target activity or health
condition [102, 120, 178, 192, 239]. As Oh et al. observed in their
clinic interviews, most of the data patients kept tracking were
not the data that clinicians needed for health assessment; thus,
patients struggled to manage and prioritize their tracking prac-
tices amidst different tools and numbers [178]. Furthermore, in
making sense of multi-stream data, those who lack data literacy or
domain expertise can feel overwhelmed to interpret the hidden mes-
sages [5, 40, 48, 116, 239]. For complicated health conditions such as
multiple sclerosis [5] and women’s health issues [26, 40], tracking
and gathering multiple types of data may not help them find an-
swers to their questions, but ended up creating more confusion and
frustrations. In addition, several studies pointed out that it is not
guaranteed that valuable insights can be derived from personal data.
As a result, people rarely engage with tracking or revisiting their
data. This was exemplified in the scenarios of constructing personal
mementos with photos of home objects [97], seeking patterns from
personal records [24, 57, 201], and learning from long-term house-
hold activities captured by wearable cameras [145]. As Lindley et
al. brought up, these personal archives have the potential to trigger
meaningful reflections, but oftentimes the mundane nature of what
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is being captured may not lead to personally meaningful insights
or not worth recording [24, 105, 127, 145, 216].

Third, quantification can backfire. By examining how partic-
ipants reacted to their quantified selves with a series of numbers
representing their life, prior studies found that stress introduced by
quantification is often overlooked in the early stage of PI system
design [2, 34, 53, 54, 93, 105, 150, 156]. This phenomenon is partic-
ularly prevalent in managing health conditions with stigma (e.g.,
women’s health, weight management, mental health), where indi-
viduals tended to have a stronger emotional experience with their
personal data [26, 39, 54, 54, 173, 195, 237]. This is mainly because
the ways that their personal data are presented could erode their
self-esteem. For instance, those with eating disorders can become
overly obsessed with their weight and calorie intakes and end up
taking“unhealthy data-driven” actions such as over-exercise and in-
tentional vomiting [54]. Similar findings have been reported in situa-
tions involving intensive peer competitions such as collegiate athlet-
ics’ sports training [33] and online game [130], where superior num-
bers often carry persuasive influence that symbolize one’s capability
and inferior numbers can undermine their motivations. In these sit-
uations, individuals turned their focus to improving the data instead
of improving themselves, as they had little knowledge about how
their data were analyzed and impacted their performance. More-
over, as personal data tracking has expanded to a means for self-
expression and social interaction [18, 29, 75, 196, 231], the ways that
data are presented can impose burden to those who are obsessed
with impression management for social validation [40, 78, 100, 130].
In some situations, individuals see data as their self-identities, and
may intentionally curate and present their data to appear more
“socially acceptable,” which does not necessarily align with their
personal life trajectories [27, 215]. For instance, Chung et al. found
that food bloggers who share their diet on social media tended to
post food intake to meet the social norm expectation and deviate
from their original health goals [27]. Thomas et al. found that people
selectively presented their social media posts by removing disliked
information for more pleasant personal archives [215]. In their dis-
cussions, researchers noted that this phenomenon could potentially
foster social comparison and peer pressures, further perpetuating
stress and unrealistic standards to individuals [130, 210, 215].

4.3.2 Variations in Individuals’ Tracking Needs and Literacy. When
seeking answers to why people do not engage or even abandon
using PI systems, researchers found that one reason was the mis-
match between the system design and individuals’ needs of
tracking. This mismatch often arises with novel tracking technolo-
gies such aswearable devices, whichwere commercialized primarily
to promote competitive fitness with numerous performance metrics
and goal-setting features, but the general population may not prior-
itize such intense tracking [32, 76, 82, 134, 190]. Even the tracking
devices could satisfy users’ curiosity about their activities at the
beginning, they may lose appeal as the novelty wears off or the
data fails to provide meaningful and long-term insights, because the
fixed system design often fails to adapt to the ever-changing user
needs [32, 134, 195]. In other cases, the needs of special populations
such as older adults and those with disabilities, are often not part of
the consideration of the system design [15, 171, 195]. For example,
while activity trackers usually aim to encourage users to increase

their physical activity by focusing on step counts, calories burned,
or active minutes, this design overlooks the fact that many older
adults prioritize other goals, such as symptom management (e.g.,
reducing chronic pain, managing arthritis) and functional training
(e.g., maintaining balance, improving mobility, or performing daily
tasks independently) [15]. In this light, Choe and Luo et al. argued
that PI systems should be flexible and customizable [25, 150], which
allows individuals and other stakeholders to decide what to track
and how to track rather than imposing rigid system constraints
that may not align with users’ evolving needs and contexts.

In addition, individuals’ literacy in health and their data
comprehension ability, largely shapes their ability to make effi-
cient and meaningful use of the data. Adequate health literacy is
essential for monitoring multi-faceted phenomena such as sleep
and stress that are not directly measurable but instead inferred
from specific data points [22, 48, 102, 131, 185, 194], or managing
health conditions (e.g., PCOS, fertility) that are difficult to diag-
nose [26, 40, 48]. For instance, while sleep tracking has become
prevalent withmetrics including deep and light sleep hours or wake-
up times, sleep medical experts have highlighted that ‘a healthy
night of sleep’ varies for different individuals, depending on factors
such as their ability to stay attentive during waking hours or the
ease of falling asleep [194]. However, individuals often lack the
necessary knowledge and guidance to efficiently understand their
sleep quality. In cases where people manage complicated and uncer-
tain health conditions, their very first challenge often arises from
recognizing the signs and symptoms that need to be tracked [26]. Be-
sides, researchers have highlighted that self-tracking is “knowledge-
intensive,” requiring not only the background knowledge about
what is tracked [33, 40, 48, 190], but also the ability to read and
comprehend the data and their presentations [52, 109, 161]. When
it comes to exploring the data, some PI systems offer abstract or
metaphorical visualizations to engage individuals (e.g., using traffic
lights to indicate well-being status), but those who are less familiar
with such representations often find themselves lost amidst the
data, struggling to grasp the takeaways [52, 109, 161]. This discon-
nection can hinder their ability to derive meaningful insights, limit-
ing the effectiveness of these systems in supporting self-reflection
and decision-making. With the growing commercialization of AI-
powered personal informatics (PI) systems, users are often required
to understand complex metrics and interpret AI-driven insights,
making it critical to develop literacy in health knowledge and data
comprehension abilities [66].

4.3.3 The Social Dynamics of Data Sharing. As PI systems have
evolved from being primarily utilized by individuals to being adopted
by multiple stakeholders, we have seen research studying the prac-
tice of sharing personal data to facilitate information exchange and
collaboration between patients and clinicians [28, 86, 87, 118, 239],
caregivers and care-receivers [16, 91, 119, 187, 232], parents and chil-
dren [19, 92, 104, 200, 201, 221, 223], athletes and coaches [33, 128],
etc. In these studies, PI serves as an information hub that enables
one party to better understand the other so that they can commu-
nicate and collaborate more effectively. However, data sharing
is subject to the hierarchic relationships involved, particularly
in the presence of power imbalances arising from individuals’ ex-
pertise (e.g., patients and clinicians), resources (e.g., children and
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parents), or organizational levels (e.g., employer and employees).
The power imbalances can impact the level of control individu-
als have over the collection and sharing of their personal data,
even though they may feel uncomfortable about the sharing pro-
cess [28, 118, 128, 146, 150, 178, 185, 196, 208, 222]. This is one of
the primary reasons for tension among multiple stakeholders in
self-tracking. For example, due to the fear of judgment and dis-
crimination, patients may hesitate to share unhealthy behaviors
(e.g., alcohol intake) with clinicians [28, 208, 227], children might be
reluctant to share the details of their daily routines (e.g., bedtime)
with parents [84, 104, 179, 185], and employees may be unwilling
to share their productivity data with their employers [149, 196].

Furthermore, data sharing requires a mutual engagement
that can be difficult to sustain. While some individuals are pas-
sionate about sharing their personal data, the other party may lack
the resources to engage in the sharing process. This was commonly
observed in patient-clinician communications, where patients are
eager for clinicians to have a deeper understanding of their health
conditions through data sharing, yet clinicians might not have
the time and infrastructural support to verify and manage the
data [69, 118, 227, 239]. In a few cases, researchers investigated
tracking in intimate relationships [40, 41, 195], noting the dispro-
portional labor distribution between partners in fertility tracking,
where the responsibility of actively seeking measures and solutions
primarily falls on women. This imbalance can further exacerbate
negative emotions experienced by the individual bearing the greater
burden, potentially straining their relationships.

4.3.4 The Intention-Behavior Gap. Early research, even before the
introduction of the term “Personal Informatics,” had explored the
potential of self-monitoring to enable positive changes [35–37, 144].
This perspective considers personal data as a reference for setting
goals and encouraging progress, which echoes the stage-based
model by placing “action” as the last stage of PI [138]. Since Con-
solvo et al. pioneered a metaphoric approach to encourage physical
activities by mapping individuals’ step counts into flowers and
butterflies in a stylized wallpaper on mobile phones in 2008 [36],
researchers have begun exploring various design features to be
incorporated into PI for desired changes, including strategically
framing personal data visualization (e.g., [17, 88, 93, 122, 180]), sup-
porting goal setting and planning (e.g., [1, 43, 44, 136, 177, 217, 230]),
gamification and rewarding mechanism [77, 114, 191], and building
communities to boost motivations through peer support (e.g., [18,
29, 64, 75, 114, 162, 165, 196, 210]).

While recognizing the effectiveness of PI in facilitating behavior
change, researchers have discussed that framing personal data pri-
marily as a means to “persuade” individuals often overlooked the
gaps between human intention and their behaviors. Despite being
aware of the need for change or having access to the necessary
information, people often struggle to act effectively due to the cog-
nitive, informational, environmental, and time constraints,
or bounded rationality, suggesting humans are not fully rational
in the way they make choices within limited resources [209]. Par-
ticularly, human behaviors are deeply shaped by their living en-
vironments [19, 44, 148, 236] and social context [96, 156, 203]. In
Chen et al.’ work aimed at reducing adolescence’ smartphone addic-
tion, they found that tracking and presenting participants’ phone

usage to increase their awareness was not enough to promote mean-
ingful changes because of their inadequate self-regulation ability,
lack of alternative choices, and living environment constraints [19],
which was also highlighted by other researchers in various behavior
change contexts [73, 181, 233]. When individuals are pressured to
meet specific goals but fail to do so, they are likely to develop nega-
tive emotions and tensions with others in their lives (e.g., patients
felt shamed to be judged by clinicians [28]).

It is also noteworthy that people relapse easily. Even though
behavior change is observed during the study period, it does not
mean that the change can be sustained in the long run. Although
we found only two papers continued to track individuals’ behaviors
after withdrawing the PI intervention, both showed that once the
PI intervention was withdrawn, individuals may revert to their
previous behavior patterns or even perform worse than before [122,
196]. Specifically, Kim et al. found that while strategically framed
visualization of productivity data by highlighting the distracted
digital activities can boost people’s motivations to stay productive,
a significant productivity loss was observed after withdrawing the
visualization [122]. In Rivera-Pelayo et al.’ experiment of shared
mood and productivity tracking at workplace, individuals’ work
performance significantly increased, but after stopping tracking,
their productivity notably dropped [196]. A possible explanation,
as the researchers found from interviewing the participants, could
be that the stress of being monitored helped increase individuals’
productivity during the intervention period, but the effect could
not last in the long run [122, 196]. Additionally, researchers noted
that relapse could even occur in the process of tracking, especially
for tracking negative behaviors [147, 180]. For example, tracking
one’s smoking intention can trigger rather than reduce their desire
to smoke [180].

5 Discussion
In the preceding sections, we have identified and articulated three
main causes of unintended consequences from tracking and inter-
acting with personal data: the data-centric design ideology, the
individualized tracking needs, literacy, and social context, and the
gap between their intentions and behaviors. Here, we discuss the
opportunities toward a more sustainable and critical way of using
data that respects its power and constraints, drawing on the “turn
to practice” movement in HCI research [132] to re-ground studies
from data-centric to data in practice.

5.1 From Data-Centric to Data in Practice
Several sociologists described the data-centric ideology as “dataism”
or “datafication” [176, 220], “a belief in the objective quantification
and potential tracking of all kinds of human behavior and sociality
through online media technologies” and ”involves trust in the (insti-
tutional) agents that collect, interpret, and share (meta)data”[220].
The ideology fundamentally resides in the positivist theories. De-
rived from traditional sciences such as physics that seek to form
idealistic and simplified models to describe complex phenomena
in the world, positivist theories seek to distill the complexities of
social phenomena to similar idealistic and simplified models, which
are often quantitative and mathematical [83, 199]. By doing that,
however, the details of particular contexts, occasions, and practices
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are abstracted away. Such a positivist approach is manifested in a
majority of existing PI literature—utilizing the data to know thyself,
to enable desired changes, or to aid collaboration or socialization—
where the captured data are taken as a direct reflection of objective
and independent properties of activities, while the particular de-
tails of context, occasions and practices are lost [8, 138, 140, 160].
With these quantified data, it is hoped that various correlations
between different properties could be derived and made available
to inform individuals about themselves and further guide them to
make decisions and take actions.

However, our everyday activities and lives are essentially and
foremostly situated; no properties are objective, independent, or
absolute to be captured as such [50]. But rather, their meanings
and relevance are emergent and subject to a process of interpre-
tation and reinterpretations, and are dynamically and continually
changing all the time [50]. This has already been illustrated in many
empirical studies: drawing data-driven insights that fit real-life situ-
ations can be challenging and even unrealistic, as much of the data
deemed relevant to the target activity may turn out to be irrelevant
and even misleading, or the relationships between the target be-
havior and its surrounding contexts cannot be simply delineated
through static formulas [8, 46, 48, 99, 101, 112, 156]. Even though
prior work has attempted to collect and quantify as much data
as possible and “let the insights emerge” [8, 22, 24, 99, 139, 139],
our analysis showed that more data does not always bring more
knowledge and may introduce more noise and burdens.

This reflection resonates with Dourish’s critique of how “con-
text” was approached in HCI research twenty years ago [51]: while
“context” was increasingly recognized as important in designing in-
teractive systems, it was often viewed as a representational problem.
This perspective often takes “context” as something informational,
stable, delineable, separable (from the activity and socio-cultural
surroundings), and can be automatically encoded. Drawing on a
phenomenological perspective, Dourish argued that the “context”
related to one’s behaviors is not fixed or even stable, but dynami-
cally evolves over time, subject to changes caused by various forces,
so is “a relational and occasional property with a dynamic scope that
arises from activity” [51]. Taking this phenomenologically informed
approach, we now turn to discuss how PI system design towards the
“practice” paradigm that encompasses human activities, comput-
ing, historical interaction processes, as well as cultural and social
environments as interwoven within the practice [132].

5.1.1 Data as Lived. First, we see personal data as lived and
evolving information surrounding the target activities or condi-
tions rather than their stable metrics. As such, the ways that in-
dividuals explore and reflect on their data should similarly be an
active process, rather than merely gaining static “insights” (e.g.,
how coffee intake is related to one’s sleep quality, whether the time
of the day affects how many steps a person walks) mentioned many
prior studies (e.g., [22, 138, 139]). This call aligns with the idea of
“self-reflection”: a subjective and ongoing process where individuals
seriously and actively analyze and evaluate their own thoughts,
feelings, attitudes, and behaviors for self-growth [12, 67, 72]. Be-
yond quantifying and categorizing types of data-driven insights
that are derived at one time (e.g., step counts and weather are posi-
tively correlated), attention should shift toward exploring deeper

questions. These questions include what constitutes meaningful
reflection across self-tracking stages, and how to facilitate the tran-
sition from shallow reflection (e.g., “I feel happier when I exercise
more”) to more in-depth ones (e.g., “my recent physical activities
have decreased, partly due to a busy work schedule but also because
I’ve felt less motivated when exercising alone. This contrasts with my
previous enjoyment of solo workouts. The underlying reason might
be ...”). To support such in-depth reflection, a starting point can
be collecting more qualitative, expressive, and implicit personal
data beyond quantitative, explicit and restrained values. Rather
than telling users what their daily activities and experiences are,
the data should serve as cues that open up richer interpretations
for individuals to incorporate into their fluid and dynamic social
practices, e.g. by maintaining the data’s original forms, including
unstructured texts, photos, audio, videos, and social media posts,
preserves the nuances and details that can enrich individuals’ data
exploration experiences [56, 147, 215].

Without the restriction imposed by quantification, individuals
are encouraged to engage in a more contemplative interaction with
their personal archives rather than taking the data as a measurable
standard. As Wang et al. discovered in their recent study with older
adults, individuals sometimes “preferred immersion over tracking”
for certain activities such as mental well-being, cognitive health,
and social connectedness [224]. This preference for immersion does
not imply abandonment of tracking; rather, it highlights the im-
portance of identifying which aspects individuals find personally
meaningful to track, which can minimize unnecessary interpreta-
tion burdens and provide individuals with a dynamic understand-
ing of how their data intersects with their daily practices. As AI
technologies advance in processing large unstructured informa-
tion [159, 213, 225, 238], researchers can make PI systems adapt the
data acquisition and analysis procedures, and design interfaces to
actively communicate with users and seek their feedback for poten-
tial “new contexts.” As one direction, a few studies have explored
the use of conversational interfaces to gather information about
individuals’ activities, thoughts, and their living environments via
natural language input [127, 141, 148].

5.1.2 Data Sharing as Socially and Culturally Conditioned. As de-
scribed in Section 4.3.3, PI systems are increasingly accommodating
multiple users and stakeholders, indicating that personal data and
insights generated are not confined to individuals but are integrated
into broader social and cultural contexts. In such cases, the inter-
actions between multiple stakeholders and data become deeply
embedded within a broader, more intricate social structure. This
structure is shaped by interpersonal relationships between individ-
uals as well as by the underlying infrastructures and cultural norms.
Adopting the data-centric perspective, prior work often placed em-
phasis on the data as the media for individuals to know each other
and as the bridge to connect them. Inevitably, the complexities of
the underlying social and cultural structures and infrastructures
are not well considered, and can bring out tensions and conflicts
regarding data access and relationship dynamics that researchers
did not anticipate initially [9, 28, 118, 128, 146, 178, 185, 222]. To
mitigate these tensions, we emphasize that the data being shared
needs to take socially and culturally conditions into account, which
involves the interpersonal relationships between the individuals
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who engage with the data as well as in the time and space where
data sharing happens [79].

At the interpersonal level, the design of the data-sharing mecha-
nisms should consider the relationships between those who share
and receive data. For instance, the extent of data access might dif-
fer between close family members and more casual acquaintances.
Similar to Epstein et al.’s mapping review [61], our review shows
that prior work in PI frequently overlooks privacy concerns and
risks. While some studies have touched upon the privacy risks of
PI, there is limited empirical research dedicated to investigating
specifics of these risks or strategies to address them, with a few
notable exceptions including [60, 71, 184]. These studies shed light
on potential opportunities for respecting and reinforcing the bound-
aries inherent in various types of relationships when it comes to
sharing personal data, such as enabling customized privacy set-
tings regarding who can access the data and to what extent for
those with complicated mental health concerns [184], giving in-
dividuals the autonomy to fined-grain the data to be shared on
social media [60], and employing an avatar-based pseudonym in
communal data sharing [71]. Additionally, researchers noted that
abstract composition of personal data, such as customized heart
rate visualization with 3D printing materials, could be meaningful
to individuals who created the data representation but does not
necessarily reveal concrete information to others [6, 111].

As people increasingly utilize PI systems as part of navigating
social infrastructures and building navigation competence [9, 33,
79, 130, 189], it becomes crucial to consider the implications of
data sharing within the broader institutional level. For patients to
share their health data with health providers, the burden associ-
ated with data sharing does not exist only in collecting, integrating,
and managing the data [28, 239], but also in adapting the data
to work with fragmented healthcare services for making plans
and negotiating with stakeholders [79]. Consequently, patients
may be overwhelmed by the complexity of various services and
fail to effectively communicate their struggles and manage their
health [79, 178]. On the health professionals’ side, even though they
recognize the benefits of data sharing, they may lack the time, re-
sources, and capacity to organize, process, and analyze the data. As
a result, the sharing process ends up burdening both parties instead
of enhancing collaboration. These challenges underscore the need
for a collective effort from the government, policymakers, hospital
authorities, and healthcare industry to build a supportive infras-
tructure that can facilitate efficient information exchange in clinical
settings, so as to ensure that data-sharing practices contribute pos-
itively to healthcare outcomes rather than strain the system and
over-exploitation of resources from individual stakeholders. When
it comes to PI system and device design, this means that we should
adopt a practice-oriented design approach that engages with exist-
ing practices, institutional arrangements, and infrastructures [229].
Relatedly, in situations of data sharing on social media, the ways
that the sharing platform is designed and moderated can also affect
the social norms within the community and potentially create un-
healthy data obsession and competition [39, 100, 130]. Therefore,
in online communities where data are valued for exchanging ideas
and providing peer support, joint efforts between the technical
teams of community developers and the administrators, such as
moderators, are required to foster a friendly communication culture

and constantly monitor and adapt policies to ensure a safe space
for data sharing.

5.2 From Data for Persuasion to Data for
Empowerment

While acknowledging the values that PI can provide, such as pos-
itive behavior changes (e.g., increase in physical activities [37],
improvements in productivity level [122]) and sense of achieve-
ment [148], our findings suggested that existing work largely de-
rived values in PI from a persuasive perspective. That is, “per-
suading” individuals to improve their data as a way to improve
themselves [1, 44, 148, 210]. This approach, as discussed above, has
its limitations because data cannot fully represent reality. More-
over, several studies have shown that such persuasion-focused
design (e.g., highlighting the goals that are not achieved) can cause
unintended emotional stress, including rumination, guilt, and self-
blame [40, 53, 122, 168]. Partially, the stress was induced by the
authority that data were granted to symbolize one’s successes and
failures. Additionally, some designs of the PI interface may pass
“invisible judgments” into the data presentation, such as by visually
framing the data with negative connotations, which can further
exacerbate the feeling of inadequacy and stress (e.g., use red color
to highlight high-calorie intake may lead to eating disorder behav-
iors [54]).

To mitigate these unintended stresses and derive values in PI
beyond persuasion, we see personal data as a means to empower
individuals [204] rather than a way to evaluate or persuade them.
Empowerment, despite its various definitions, is commonly recog-
nized as “a process by which people, organizations, and communities
gain mastery over issues of concern to them” in psychology [193].
In the HCI community, empowerment is extended to multiple as-
pects, particularly in creating “empowering experience” that pro-
motes users’ autonomy or self-esteem, and “skills and education”
that helps users acquire skills or knowledge to benefit them [204],
from which we see opportunities to empower individuals with PI.

5.2.1 Data for Cultivating Positivity and Creativity. Empowering
data-tracking experiences should enhance individuals’ self-esteem
and self-autonomy by cultivating positivity and resilience rather
than enhancing peer comparison or social expectations. This is
especially important in managing sensitive and stigmatized health
conditions, such as fertility issues [39] and eating disorders [54, 150].
For instance, researchers have found that positive memories play
important roles in alleviating emotional distress. This can be imple-
mented by highlighting positive moments (e.g., a visual gallery of
joyful photos) [91], visualizing data on playful and creative objects
(e.g., 3D printing materials) [108–111, 111, 214]. In particular, Terz-
imehić et al. found that using internet memes for daily journaling
could help people perceive negative events as more positive in ret-
rospect, owing to the emotional and often humorous connotations
of memes [214]. In another example, Maitland et al. highlighted the
importance of PI systems recognizing partial goal completion as a
strategy to boost individuals’ confidence [156]. This idea aligned
with Choe et al.’s investigation on visual framing of personal data,
which demonstrated that highlighting achieved progress rather
than the remaining challenges significantly enhanced individuals’
self-efficacy towards achieving their goals [23].
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Besides, allowing people to customize what data to track about
themselves and how to represent the data, can offer them a high
level of self-autonomy [6, 171, 191, 216]. As Ayobi et al. found, the
seemingly burdensome bullet journaling practice with pen and
paper allowed individuals to engage in mindful reflective think-
ing, because they were empowered to create narratives from their
own lives without the constraints typically imposed by digital
tools [6]. While a few research efforts have begun to build dig-
itally customizable PI systems that allow individuals to decide what
to track [4, 46, 123], their primary focus remains rooted in a datais-
tic perspective by prioritizing data quantification, categorization,
and correlation over the qualitative and expressive dimensions that
are crucial for empowerment. Echoing the “data in practice” call
mentioned above, while collecting and processing data that are
qualitative and unstructured (Section 5.1.1), future research can
explore design strategies for individuals to actively integrate and
transform their data into personalized and artistic presentations—
like those creations in the popular book Dear Data [153], where
individuals are empowered to articulate what and how they want
to self-track. Additionally, drawing from the theory of embodied
cognition, there has been growing interest in using bodily actions
to delineate personal feelings, such as hand-gesture-based emotion
tracking [152]. These approaches opened new possibilities for in-
tegrating embodied and expressive techniques into self-tracking
practices, directing individuals into an more creative and open-
ended mindset towards their data rather than solely focusing on
improving the data.

5.2.2 Data for Enhancing Literacy. Effectively reading, interpret-
ing, and making sense of data demands a combination of literacy
skills that span across data comprehension, visualization techniques,
and domain-specific knowledge [48, 151, 178]. As researchers found,
health literacy significantly affected one’s ability to share and ex-
plain their health data at clinics [151]. However, the majority of
existing PI systems are designed with limited consideration of the
target users’ literacy. As our findings showed, patients often have
little knowledge about whether the data they tracked is relevant
to their health conditions [178]; athletes are guided by their data
to conduct training without a clear understanding of how the data
contributes to their health and performance [33]. This empirical
evidence prompted us to consider not only how to take individ-
uals’ literacy levels into account when designing PI systems, but
also how to actively enhance their relevant literacy through the
adoption of these systems.

Essentially, the interface that presents personal data should be
able to adapt its language and visual cues appropriate to various lit-
eracy levels. While graphic charts are mostly commonly employed
for individuals to identify trends and patterns [21, 24, 59], such de-
sign may not be inclusive for individuals with limited visualization
literacy or data expertise. Thus, additional presentations can be
incorporated, including but not limited to natural language descrip-
tions of key trends [8], and voice interaction that allows individuals
to proactively inquire about their data [124, 148]. Furthermore, ex-
isting tools designed to improve data literacy, visualization literacy,
or health literacy often rely on generic data sources, which may
not resonate with everyone [7, 10, 47]. PI systems, on the other
hand, offer a unique advantage by utilizing data that is intimately

connected to the individuals’ personal activities and life situations,
which holds promise to motivate and engage users as well as foster
proactive learning and exploration experiences. To better leverage
this advantage, PI researchers can incorporate learning components
into their designs. For example, enhancing visualization literacy
could involve displaying the same dataset through various visual
formats (e.g., multiple chart types to illustrate data trends [24]);
improving health literacy might involve using real-world analogies
and visual cues to explain the data (e.g., illustrating how certain
amounts of calorie counts can be mapped to the food that people
are familiar with [20]).

6 Limitations
We acknowledge that our literature corpus might have omitted
other relevant work published in venues beyond the scope of our
search, some early work without the specific keywords (e.g., “per-
sonal informatics,” “self-tracking”), and the latest work published
after February 2024, but we have incorporated those known works
in the discussion to the best of our knowledge. After identifying
the 172 research articles, we did not employ forward and backward
sampling based on citations of the included papers because the size
of our literature corpus is much larger than a typical review.

However, we believe that the key findings of our review would
not be affected by the possible omission of certain papers, because
we focused on qualitative insights rather than quantitative statis-
tics, and the findings we report here are themes across various
studies instead of individual paper-focused. Additionally, it is im-
portant to note that conducting such a review is a meticulous and
time-consuming process, involving multiple iterations of screening,
analysis, and discussions among the team members. Our review
follows a rigorous and systematic procedure, covering a large set
of research articles from top-tier HCI venues, and took over two
years to complete.

7 Conclusion
Through a critical examination of 172 empirical research articles,
we identified five widely observed unintended consequences of
using PI systems: burdens on cognitive load, negative impacts on
emotions, tensions with social acts, counterproductive behaviors,
and practical challenges. By tracing back the origins of these conse-
quences, we synthesized their root causes involving the data-centric
design ideology, individualized tracking needs and literacy, the so-
cial dynamics around them, and their intention-behavior gap. Our
findings provided a perspective that acknowledges and articulates
the limitations of granting data with authority and power to reflect
real-life situations, make decisions, and take action. Rather than
diminishing the values that PI can promote better well-being and
life quality, we echo the “turn to practice” movement in HCI, calling
for future research to re-ground studies from data-centric to data in
practice and aiming to empower rather than persuade individuals.
Taken together, our review not only enriched and broadened the
existing landscape of PI research through a critical lens but also
contributed to discussions on future research directions to better
situate the interaction between individuals and the PI systems.
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